Efek Aerasi terhadap Perubahan Residu H2O2 Air Fermentasi Mocaf (Modified Cassava Flour)

*Nurul Yaqin  -  Magister Ilmu Lingkungan, Sekolah Pascasarjana, Universitas Diponegoro, Semarang, Indonesia
Ahmad Ni'matullah Al-Baarri  -  Program Studi Ilmu Pangan, Fakultas Peternakan dan Pertanian, Universitas Diponegoro, Semarang, Indonesia
Mochamad Arief Budihardjo  -  Program Studi Teknik Lingkungan, Fakultas Teknik, Universitas Diponegoro, Semarang, Indonesia
Widayat Widayat  -  Program Studi Teknik Kimia, Fakultas Teknik, Universitas Diponegoro, Semarang, Indonesia
Received: 28 Oct 2019; Revised: 14 Feb 2020; Accepted: 15 Feb 2020; Published: 21 Feb 2020; Available online: 19 Feb 2020.
Open Access Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Citation Format:
Article Info
Section: Artikel Penelitian (Research Article)
Language: EN
Full Text:
Supp. File(s):
Efek Aerasi terhadap Perubahan Residu H2O2 Air Fermentasi Mocaf (Modified Cassava Flour)
Subject
Type Research Instrument
  Download (59KB)    Indexing metadata
Efek Aerasi terhadap Perubahan Residu H2O2 Air Fermentasi Mocaf (Modified Cassava Flour)
Subject
Type Other
  Download (59KB)    Indexing metadata
Statistics: 57 67

Abstract

Penelitian ini bertujuan untuk mengetahui perubahan kadar H2O2 yang berpotensi menjadi pencemar lingkungan beserta parameter kualitas air fermentasi mocaf (AFM) lainnya setelah diberikan perlakuan aerasi. Limbah mocaf  yang diberikan perlakuan aerasi mengalami penurunan kadar H2O2 lebih besar dari non aerasi. Berdasarkan uji beda T-test antara perlakuan aerasi dengan non aerasi kadar H2O2 memiliki perbedaan yang signifikan (sig. p= 0,018, p<0,05).  AFM non aerasi mengalami penurunan L* sebesar 5,9%, sedangkan perlakuan aerasi menurun lebih besar dengan persentase penurunan sebesar 15,8%. TDS AFM tidak mengalami perbedaan yang signifikan antara perlakuan aerasi dengan non aerasi (P= 0,226 ,p>0,05) demikian juga dengan pameter turbiditas (P= 0,117, P>0,05) dan OD 610 nm (P= 0,987, P> 0,05). 

Note: This article has supplementary file(s).

Keywords
lingkungan, mocaf, H2O2, TDS, kecerahan, turbiditas, OD610nm

Article Metrics:

  1. Agarry, O. O. (2010). Production of Kunun-zaki (A Nigerian fermented cereal beverage) using starter culture. International Research Journal of Microbiology. 1(2). pp. 18–25.
  2. Aida, siti nurul and Utomo, A. D. (2016). Tengah Assessment of Water Quality for Fisheries in Rawa Pening Centre of Java. Bawal. 8(3). pp. 173–182.
  3. Al-Baarri, A. N., Agawa, M. and Hayakawa, S. (2016). Scale-Up Studies on Immobilization of Lactoperoxidase Using Milk Whey for Producing Antimicrobial Agent. Journal of the Indonesian Tropical Animal Agriculture. 35(3). pp. 185–191. doi: 10.14710/jitaa.35.3.185-191.
  4. Amalia, R. (2017). Produksi Mocaf (Modified Cassava Flour) Darisingkong Berkulit Aridengan Variasi Tahap Fermentasi dan Konsentrasi H. Available at: http://repository.unej.ac.id/handle/123456789/78537.
  5. Arndt, R. E. and Wagner, E. J. (1997). The toxicity of hydrogen peroxide to rainbow trout Oncorhynchus mykiss and cutthroat trout Oncorhynchus clarki fry and fingerlings. Journal of the World Aquaculture Society. 28(2). pp. 150–157. doi: 10.1111/j.1749-7345.1997.tb00850.x.
  6. Ayu, A. and Shovitri, M. (2013). Kemampuan Isolat Bacillus sp. dalam Mendegradasi Limbah Tangki Septik. Jurnal Sains dan Seni Pomits, 2(1), pp. 7–11.
  7. Consolaro, A. (2014). Mouthwashes with hydrogen peroxide are carcinogenic, but are freely indicated on the internet: warn your patients. Dental Press Journal of Orthodontics. 18(6). pp. 5–12. doi: 10.1590/s2176-94512013000600002.
  8. Kiselova, Y. et al. (2009). Improving Effects of the Mushroom Yamabushitake on Mild Cognitiv Impairment. China journal of Chinese materia medica. 22(April 2008), pp. 557–559. doi: 10.1002/ptr.
  9. Kurtz, D. M. et al. (2008). Pathway for H2O2 and O2 detoxification in Clostridium acetobutylicum. Microbiology, 155(1), pp. 16–24. doi: 10.1099/mic.0.022756-0.
  10. Loque, D. et al. (2008). Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochemical Journal, 414(1), pp. 53–61. doi: 10.1042/bj20080287.
  11. Mishra, S. and Imlay, J. (2012), Why do bacteria use so many enzymes to scavenge hydrogen peroxide?, Archives of Biochemistry and Biophysics. Elsevier Inc., 525(2), pp. 145–160. doi: 10.1016/j.abb.2012.04.014.
  12. Novita, E. (2014). Optimasi Penggunaan Koagulan Alami Biji Kelor (Moringa Oleifera) Pada Pengolahan Limbah Cair Mocaf. Jurnal Agroteknologi, 08(02).
  13. Pericone, C. D. et al. (2003). Factors Contributing to Hydrogen Peroxide Resistance in Streptococcus pneumoniae Include Pyruvate Oxidase (SpxB) and Avoidance of the Toxic Effects of the Fenton Reaction. Journal of Bacteriology, 185(23), pp. 6815–6825. doi: 10.1128/JB.185.23.6815-6825.2003.
  14. Piard, J. C. (1991). Inhibiting Factors Produced By Lactic Acid Bacteria. Editions Scientifique, 71, pp. 525–541.
  15. Ridaningtyas, Y. W., Widodo, D. S. and Hastuti, R. (2013). Pengolahan Limbah Cair Industri Percetakan Secara Elektrolisis Dengan Elektroda Karbon/Karbon. Chem Info. 1(1), pp. 51–58. doi: 10.1002/adma.201001699.
  16. Rosales-Soto, M. U. et al. (2016). Microbiological and physico-chemical analysis of fermented protein-fortified cassava (Manihot esculenta Crantz) flour. LWT - Food Science and Technology. Elsevier Ltd, 66, pp. 355–360. doi: 10.1016/j.lwt.2015.10.053.
  17. Ruriani (2006). Identifikasi potensi Diabetes, (September), pp. 2005–2006.
  18. Said, N. I. and Utomo, K. (2007). Pengolahan Air Limbah dengan Proses Lumpur Aktif’, Institut Teknologi Bandung, 3(2), pp. 1–12.
  19. Sakamoto, M. et al. (1998). Aerobic growth of some lactic acid bacteria enabled by the external addition of peroxidase (Horseradish) to the culture medium. Journal of Fermentation and Bioengineering. 85(6), pp. 627–629. doi: 10.1016/S0922-338X(98)80017-2.
  20. Slamet, Ulyarti and Rahmi, S. L. (2019). Effect of Fermentation Time of Patchouli Leaves Using Tempe Yeast on Yield. Jurnal Teknologi dan Industri Pertanian Indonesia. 11(01), pp. 19–25. doi: 10.17969/jtipi.v11i1.11671.
  21. Smetanková, J. et al. (2018). Influence of aerobic and anaerobic conditions on the growth and metabolism of selected strains of Lactobacillus plantarum. Acta Chimica Slovaca, 5(2), pp. 204–210. doi: 10.2478/v10188-012-0031-1.
  22. Supriyantini, E., Nuraini, R. A. T. and Fadmawati, A. P. (2018). Studi Kandungan Bahan Organik Pada Beberapa Muara Sungai Di Kawasan Ekosistem Mangrove, Di Wilayah Pesisir Pantai Utara Kota Semarang, Jawa Tengah. Buletin Oseanografi Marina, 6(1), p. 29. doi: 10.14710/buloma.v6i1.15739.
  23. Wang, Y. et al. (2018). Simple approach to fabricate a highly sensitive H2O2 biosensor by one-step of graphene oxide and horseradish peroxidase co-immobilized glassy carbon electrode. International Journal of Electrochemical Science. 13(3), pp. 2921–2933. doi: 10.20964/2018.03.20.
  24. Whittenbury, R. (2009). Hydrogen Peroxide Formation and Catalase Activity in the Lactic Acid Bacteria. Journal of General Microbiology. 35(1), pp. 13–26. doi: 10.1099/00221287-35-1-13.
  25. Yulifianti, R. and Ginting, E. (2012). Terigu Mendukung Diversifikasi Pangan. Buletin Palawija, 12(23), pp. 1–12.
  26. Zotta, T. (2017). Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry. Journal of Applied Microbiology. 122(4), pp. 857–869. doi: 10.1111/jam.13399.