Hidrolisis Pati dari Batang Kelapa Sawit dengan Kombinasi Perlakuan Asam Sitrat dan Steam Explosion Terhadap Sifat Fisiko Kimia Dekstrin

Syarifah Yusra  -  Departemen Agroteknologi, Fakultas Pertanian, Universitas Sains Cut Nyak Dhien, Nangro Aceh Darussalam, Indonesia
Yudi Pranoto  -  Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Yogyakarta, Indonesia
Chairil Anwar  -  Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Yogyakarta, Indonesia
*Chusnul Hidayat orcid scopus  -  Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Yogyakarta, Indonesia
Received: 7 Nov 2019; Revised: 30 Jan 2020; Accepted: 3 Feb 2020; Published: 21 Feb 2020; Available online: 9 Feb 2020.
Open Access License URL: http://creativecommons.org/licenses/by-nc/4.0

Citation Format:
Article Info
Section: Artikel Penelitian (Research Article)
Statistics: 135 474
Abstract

Modifikasi pati dilakukan untuk memperbaiki sifat fungsional pati dan memperluas penggunaan pati dalam produk pangan. Modifikasi pati menjadi dekstin dapat dilakukan baik secara fisik, kimiawi, atau kombinasi fisiko-kimia. Pada penelitian ini dilakukan modifikasi pati dengan kombinasi pregelatinisasi-steam explosion (Pregel-SE), dan kombinasi pregelatinisasi-asam sitrat-steam explosion pada pH 4 (pregel-pH-SE4) dan pH 3 (pregel-pH-SE3) untuk produksi dekstrin. Tujuan dari penelitian ini adalah untuk memperoleh metode hidrolisis terbaik dalam pembuatan dekstrin. Produk yang dihasilkan diamati tingkat kelarutan, berat molekul (Mw), dextrose equivalent (DE), Spectra Fourier Transform Infrared (FTIR), SEM, dan viskositas pasta. Hasil menunjukkan bahwa kondisi terbaik modifikasi pati menjadi dekstrin diperoleh pada perlakuan pregel-pH3-SE. Pada perlakuan ini diperoleh kelarutan 75,94 %, berat molekul 60100 g/mol dan DE 15,92%. Pita vibrasi baru terlihat di wilayah bilangan gelombang 1717 cm-1 pada analisis FTIR. Hasil SEM menunjukkan bahwa bentuk granula pati yang bulat sudah tidak terlihat setelah kombinasi perlakuan. Pengujian RVA menunjukkan penurunan viskositas berkorelasi positif terhadap penurunan berat molekul, peningkatan kelarutan dan DE setelah kombinasi perlakuan ditingkatkan.

 

Starch modification is performed to improve the functional properties of starch and starch utilization in food products. Modification of starch, such as dextrin, can be performed by physical and chemical methods, or a combination method, such as physico-chemical. In this research, starch modification was carried out by a combination between pregelatinization and steam explosion (Pregel-SE), a combination between pregelatinization, citric acid and steam explosion at pH 4 (Pregel-pH-SE4) and at pH 3 (Pregel-pH-SE3) for the production of dextrin. The objective of this research was to obtain the best method for dextrin production. The results were observed, such as levels of solubility, molecular weight (Mw), dextrose equivalent (DE), Spectra Fourier Transform Infrared (FTIR), SEM, and pasting properties (RVA). The results showed that the best condition of starch modification for dextrin production was obtained by Pregel-pH3-SE. Solubility, molecular weight, and DE of dextrin were 75.94%, 60100 g/mol, and 15.92%, respectively. A new peak was observed in the region of the wavenumber 1.717 cm-1 at FTIR analysis. SEM analysis indicated that the round form of starch granules did not observed after the treatments. RVA analysis showed that the decrease in viscosity was correlated with a decrease in molecular weight, an increase in solubility, and DE after the treatments.

Keywords: hidrolisis asam; modifikasi pati; pati batang kelapa sawit; pregelatinisasi; steam explosion

Article Metrics:

  1. Adapa, P., Tabil, L., Schoenau, G. 2010. Physical and frictional properties of non-treated and steam exploded barley, canola, oat and wheat straw grinds. Powder Technology 201: 230–241. DOI: 10.1016/j.powtec.2010.03.038
  2. Aktas-Akyildiz, E., Mattila, O., Sozer, N., Poutanen, K., Koksel, H., Nordlund, E. 2017. Effect of steam explosion on enzymatic hydrolysis and baking quality of wheat bran. Journal of Cereal Science 78: 25-32. DOI: 10.1016/j.jcs.2017.06.011
  3. AOAC. 1971. Official methods of analysis of the association of official analytical chemists. Journal of Pharmaceutical Sciences 60(2): 334. DOI: 10.1002/jps.2600600253
  4. Astuti, R. M., Asiah, N., Setyowati, A., & Fitriawati, R. 2018. Effect of physical modification on granule morphology, pasting behavior, and functional properties of arrowroot (Marantha arundinacea L) starch. Food Hydrocolloids 4288: 1-26. DOI: 10.1016/j.foodhyd.2018.02.029
  5. Avaltroni, F., Bouquerand, P. E., & Normand, V. 2004. Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions. Carbohydrate Polymers 58: 323–334. DOI: 10.1016/j.carbpol.2004.08.001
  6. Azemi, M., & Noor, M. 1999. Physico-chemical properties of oil palm trunk starch. Starch/Stärke, 51 (108): 293-301. DOI: 10.1002/(SICI)1521-379X(199909)51:8/9<293::AID-STAR293>3.0.CO;2-F
  7. Babu, A. S., Parimalavallia, R., Rudra, S. G. 2015. Effect of citric acid concentration and hydrolysis time on physicochemical properties of sweet potato starches. International Journal of Biological Macromolecules 80: 557–565. DOI: 10.1016/j.ijbiomac.2015.07.020
  8. Bi,Y., Zhang, Y., Jiang, H., Hong, Y., Gu, Z., Cheng, L., Li, Z., Li, C. 2017 Molecular structure and digestibility of banana flour and starch. Food Hydrocolloids 72: 219-227. DOI: 10.1016/j.foodhyd.2017.06.003
  9. Blazek, J., Gilbert, E. P. 2010. Effect of enzymatic hydrolysis on native starch granule structure. Biomacromolecules, 11, 3275–3289. DOI: 10.1021/bm101124t
  10. Castro-Cabado, M., Parra-ruiz, F. J., Casado, A. L., and Román, J. S. 2015. Thermal crosslinking of maltodextrin and citric acid. Methodology to control the polycondensation reaction under processing conditions. Polymers & Polymer Composites 24(8): 643–654. DOI: 10.1177/096739111602400803
  11. Dastidara, T. G., Netravali, A. N. 2012. Green crosslinking of native starches with malonic acid and their properties. Carbohydrate Polymers 90 (4): 1620–1628. DOI: 10.1016/j.carbpol.2012.07.041
  12. Dutta, H., Paul, S. K., Kalita, D., Mahanta, C. L. 2011. Effect of acid concentration and treatment time on acid–alcohol modified jackfruit seed starch properties. Food Chemistry 128 (2):284-291. DOI: 10.1016/j.foodchem.2011.03.016
  13. Faridah, D. N., Rahayu, W., Apriyadi, M. S. 2013. Modification of arrowroot (Marantha arundinacea L.) starch through acid hydrolysis and autoclaving-cooling cycling treatment to produce resistant starch type. Jurnal Teknologi Industri Pertanian 23 (1): 61-69
  14. Ferrinia, L. M. K., Rochaa, T. S., Demiateb, I. M., Francoa, C. M. L. 2008. Effect of acid-methanol treatment on the physicochemical and structural characteristics of cassava and maize starches. Starch/Stärke 60: 417–425. DOI: 10.1002/star.200700712
  15. Jacquet, N., Vanderghem, C., Danthine, S., Quiévy, N., Blecker, C., Devaux, J., Paquot, M. 2012. Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fiber. Bioresource Technology 121: 221–227. DOI: 10.1016/j.biortech.2012.06.073
  16. Gbenga, B. L., Olakunle, O., Adedayo, A. M. 2014. Influence of pregelatinization on the physicochemical and compressional characteristics of starches obtained from two local varieties of Dioscorea rotundata. International Organization of Scientific Research Journal of Pharmacy 4(6): 24–32.
  17. Khan, A ., Rahman, U. U., Siddiqui, S., Irfan, M., Shah, A. A., Badshah, M., Hasan, F., Khan, S. 2019. Preparation and characterization of resistant starch type III from enzymatically hydrolyzed maize flour. Molecular Biology Reports. DOI: 10.1007/s11033-019-04913-5
  18. Khanna, S., Tester, R. F. 2006. Influence of purified konjac glucomannan on the gelatinisation and retrogradation properties of maize and potato starches. Food Hydrocolloids 20: 567–576. DOI: 10.1016/j.foodhyd.2005.05.004
  19. Liu, Q. 2002. A Study of enzymatic hydrolysis of starch in potato pulp. Journal of Food Science 67 (6): 2113-2117. DOI: 10.1111/j.1365-2621.2002.tb09510.x
  20. Majumdar, S., Bhattacharyya, D. K., Bhowal, J. 2015. Study on enzymatic hydrolysis of sal (Shorearobusta) starch to dextrin. Annals of Biological Research, 6 (6), 8-12.
  21. Mei, J., Zhou, D., Jin, Z., Xu, X., & Chen, H. 2015. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch. Food Chemistry 187: 378–384. DOI: 10.1016/j.foodchem.2015.04.076
  22. Menzel, C., Olsson, E., Plivelic, T. S., Andersson, R., Johansson, C., Kuktaite, R., Järnströmb, L., Koch, K. 2013. Molecular structure of citric acid cross-linked starch films. Carbohydrate Polymers 96 (1): 270–276. DOI: 10.1016/j.carbpol.2013.03.044
  23. Miller, G.L., 1959. Use of dinitro salicylic acid reagent for determination of reducing sugar. Analysis Chemistry. 31, 426–428. DOI: 10.1021/ac60147a030
  24. More, P. R., Talib, M. I., & Parate, V. R. 2017. Development of modified instant starch from taro (Colocasia esculenta) by gelatinization. Journal of Environmental Science, Toxicology and Food Technology 11(1): 52–59. DOI: 10.9790/2402-1101025259
  25. Munegumi, T., Inutsuka, M., Hayafuji, Y. 2016. Investigating the hydrolysis of starch using α‑Amylase contained in dishwashing detergent and human saliva. Journal of Chemical Education. DOI: 10.1021/acs.jchemed.5b00545
  26. Olivato, J. B., Grossmann, M. V. E., Bilck, A. P., & Yamashita, F. 2012. Effect of organic acids as additives on the performance of thermoplastic starch / polyester blown films. Carbohydrate Polymers 90 (1): 159–164. DOI: 10.1016/j.carbpol.2012.05.009
  27. Olsson, E., Menzel, C., Johansson, C., Andersson, R., Koch, K., & Järnström, L. 2013. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid. Carbohydrate Polymers 98(2): 1505–1513. DOI: 10.1016/j.carbpol.2013.07.040
  28. Omojola, M., Akinkunmi, Y., Olufunsho, K., Egharevba, H., and Martins, E. 2010 Isolation and Physico- chemical characterization of Cola starch. African Journal of Food Agriculture Nutrition and Development 10(7): 2884–2900. DOI: 10.4314/ajfand.v10i7.59042
  29. Prasetyo, B. E., Annisa, P., Yuliasmi, S. 2018. Karakterisasi dekstrin dari pati kacang merah (Vigna angularis (Wild) Ohwi and Ohashi) dengan metode enzimatis. Conference Series Tropical Medicine 1(3):20-24. DOI: 10.32734/tm.v1i3.255
  30. Rahmawati, A.Y., Sutrisno, A. 2015. Enzymatic hydrolysis of purple sweet potato (Ipomea batatas L.) flour into functional glucose syrup: Annual Review Jurnal Pangan dan Agroindustri 3 (3):1152-1159
  31. Ridwansyah M., Nasution, Z., Sunarti, T.C. dan , Fauzi, A. M. 2010. Karakteristik sifat fisiko-kimia pati kelapa sawit. Jurnal Teknik Industri Pertanian, 17 (1): 1–6
  32. Sarifudin, A., Assiry, A. M. 2013. Some physicochemical properties of dextrin produced by extrusion process. Journal of the Saudi Society of Agricultural Sciences DOI: 10.1016/j.jssas.2013.02.001
  33. Sandhu, K.S., Singh, N., Lim, S.T. 2007. A comparison of native and acid thinned normal and waxy corn starches; physicochemical, thermal, morphological and pasting properties. Food Science and Technology 40 (9): 1527–1536. DOI: 10.1016/j.lwt.2006.12.012
  34. Shang,Y., Chao, C., Yu, J., Copeland, L., Wang, S., Wang, S. 2018. Starch spherulites prepared by a combination of enzymatic and acid hydrolysis of normal corn starch. Journal of Agricultural and Food Chemistry 1-33. DOI: 10.1021/acs.jafc.8b01370
  35. Souza, I. N., Soares, C. M. F., Souza, R. L., Freire, M. G., Silva, A. 2018. Fluid Phase Equilibria Aqueous two-phase systems formed by maltodextrin and acetonitrile : Phase diagrams and partitioning studies. Fluid Phase Equilibria 476: 179–185. DOI: 10.1016/j.fluid.2018.08.005
  36. Sritham, E., Gunasekaran, S. 2017. FTIR spectroscopic evaluation of sucrose-maltodextrin-sodium citrate bioglass. Food Hydrocolloids 70: 371–382. DOI: 10.1016/j.foodhyd.2017.04.023
  37. Sui, W., Xie, X., Liu, R., Wu, T., Zhang, M. 2018. Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough. Food Hydrocolloids 84: 571-580. DOI: 10.1016/j.foodhyd.2018.06.027
  38. Triyono, A., Andriansyah, R. C. E., Luthfiyanti, R., Rahman, T. 2017. Development of modified starch technology (maltodextrin) from commercial tapioca on semi production scale using oil heater dextrinator. Conferance Series: Earth and Environmental Science. DOI: 10.1088/1755-1315/101/1/012026
  39. Trung, P. T. B., Ngoc, L. B. B., Hoa, P. N., Tien, N. N. T., Hung, P. V. 2017. Impact of heat-moisture and annealing treatments on physicochemical properties and digestibility of starches from different colored sweet potato varieties. International Journal of Biological Macromolecule. DOI: 10.1016/j.ijbiomac.2017.07.131
  40. Utrilla-Coelloa, R.G., Hernández-Jaimesa, C., Carrillo-Navasa, H., Gonzáleza, F., Rodrígueza, E., Bello-Pérez, L. A., Vernon-Cartera, E. J., Alvarez-Ramireza, J. 2004. Acid hydrolysis of native corn starch: Morphology, crystallinity, rheological and thermal properties. Carbohydrate Polymers 103: 596-602. DOI: 10.1016/j.carbpol.2014.01.046
  41. Waliszewskia, K. N., Aparicioa, M. A., Bello, L. A., Monroya, J. A. 2003. Changes of banana starch by chemical and physical modification. Carbohydrate Polymer 52: 237–242. DOI: 10.1016/S0144-8617(02)00270-9
  42. Wang, K., Chen, J., Sun, S., & Sun, R. 2015. Steam Explosion 6: 75–104. DOI: 10.1016/B978-0-12-800080-9.00006-2
  43. Wanderley, M. C. D. A., Martín, C., Rocha, G. J. D. M., Gouveia, E. R. 2013. Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresource Technology 128: 448–453. DOI: 10.1016/j.biortech.2012.10.131
  44. Wojtasz-mucha, J., Hasani, M., Theliander, H. 2017. Hydrothermal pretreatment of wood by mild steam explosion and hot water extraction. Bioresource Technology. DOI: 10.1016/j.biortech.2017.05.061
  45. Wurzburg, O.B. (1989). Modified starches: Properties and uses, CRC Press, Boca Raton, Florida.
  46. Zhang, H., Hou, H., Liu, P., Wang, W., Dong, H. 2019. Effects of acid hydrolysis on the physicochemical properties of pea starch and its film forming capacity. Food Hydrocolloids 87: 173–179. DOI: 10.1016/j.foodhyd.2018.08.009