Efektifitas Frekuensi Ekstraksi Serta Pengaruh Suhu dan Cahaya Terhadap Antosianin dan Daya Antioksidan Ekstrak Kelopak Rosella (Hibiscus sabdariffa L.)

*Suharyani Amperawati -  Program Studi Teknologi Pengolahan Hasil Perkebunan, Jurusan Teknologi Pertanian, Politeknik Negeri Pontianak, Pontianak, Indonesia
Pudji Hastuti -  Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Yogyakarta, Indonesia
Yudi Pranoto -  Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Yogyakarta, Indonesia
Umar Santoso -  Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Yogyakarta, Indonesia
Received: 3 Nov 2018; Revised: 16 Feb 2019; Accepted: 23 Feb 2019; Published: 28 Feb 2019.
Open Access Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Citation Format:
Article Info
Section: Artikel Penelitian (Research Article)
Language: ID-ID
Full Text:
Statistics: 339 363
Abstract

Penelitian ini bertujuan untuk mengetahui kualitas dan kadar antosianin ekstrak kelopak rosela dari perlakuan ekstraksi dengan maserasi pada beberapa kali ekstraksi, serta mempelajari pengaruh suhu dan pemaparan cahaya selama penyimpanan terhadap kadar antosianin dan daya antioksidan. Ekstraksi kelopak rosela dilakukan sebanyak 4 kali dengan metode maserasi. Pengaruh penyimpanan dengan suhu 30, 40, 50, 60 dan 70oC selama 7, 14, 21, 28, dan 35 hari. Pemaparan cahaya dilakukan dengan 1478, 2835, dan 3940 lux dan sebagai pembanding digunakan perlakuan tanpa pencahayaan selama 1 sampai dengan 10 hari. Parameter untuk ektraksi meliputi kadar antosianin, warna (L*, a*, b*, ΔE), dan total padatan terlarut. Parameter penyimpanan meliputi kadar antosianin dan daya antioksidan metode radical scavenging (DPPH). Hasil peneltian menunjukkan bahwa ekstraksi ke 1, 2, 3, dan 4 kali menunjukkan kadar antosianin masing-masing 608, 218, 64, dan 32 mg/l; nilai L* sebesar 29,07; 32,27; 36,19; dan 45,27; nilai a* sebesar 10,42; 16,33; 21,90 dan 15,63; dan b* adalah 1,36; 4,56; 8,33; dan 5,86; ΔE adalah 1,31; 7,53; 15,29; dan 18,06.  Ekstraksi lebih baik dilakukan 2 kali, sedangkan ekstraksi yang ke-3 dan 4 menghasilkan kadar antosianin yang relatif kecil. Hasil penelitian juga menunjukkan bahwa makin tinggi suhu dan lama penyimpanan menyebabkan kandungan antosianin dan kapasitas antioksidan makin menurun, demikian pula makin tinggi intensitas cahaya menyebabkan makin menurunnya kadar antosianin dan kemampuan antioksidannya. Kesimpulannya, berdasarkan semua parameter yang diukur maka ekstraksi dapat dilakukan sampai dengan 2 kali dan guna menjaga antosianin dan antioksidannya, maka sebaiknya disimpan dalam ruang dingin dan terhindar dari cahaya matahari.

Kata kunci : rosela, ekstraksi, suhu, cahaya, antioksidan

Extraction Frequency Effectiveness and Effect of Temperature and Light on Anthocyanin and Antioxidant Capacity of Rosella Petal Extract (Hibiscus sabdariffa L.)

Abstract

         This study aims to determine the quality and levels of anthocyanin roselle petal extract from extraction treatment with maceration frequency and to determine the effect of temperature and light exposure during storage on anthocyanin levels and antioxidant activity. Roselle petal extraction was carried out 4 times with maceration method. Storage condition were set up at 30, 40, 50, 60, and 70oC for 7, 14, 21, 28, and 35 days. Light exposure was conducted using 1478, 2835, and 3940 lux and as a comparison, the extract was kept without light from 1 to 10 days. The parameters for extraction were anthocyanin, color levels (L*, a*, b*, ΔE), and total soluble solids. Storage parameters were anthocyanin content and antioxidant capacity of the radical scavenging (DPPH) method. The results of anthocyanin levels of extraction 1, 2, 3, and 4 times were 608, 218, 64, and 32 mg/L; 29.07, 32.27, 36.19, and 45.27 for L*, 10.42, 16.33, 21.90 and 15.63 for a* value, 1.36, 4.56, 8.33, and 5.86 for b* value, 1,31; 7,53; 15,29; and 18,06 for ΔE, respectively. Twice extraction was provide much better result for total anthocyanin, while 3rd and 4th extractions produced relatively small level of anthocyanin. The results also showed that the higher temperature and storage time, the decrease in anthocyanin content and antioxidant capacity. The higher intensity of the light caused reduction of anthocyanin content and its antioxidant activity. As conclusion, roselle extract might be conducted for two times. The storage was also suggested at low temperatures and low exposure light to keep its anthocyanin and antioxidant.

Keywords: rosella, extraction, temperature, light, antioxidant

Keywords
rosella; ekstraksi; suhu; cahaya; antioksidan; rosella; extraction; temperature; light; antioxidant

Article Metrics:

  1. Abou-Arab, A.A., Abu-Salem, F.M., Abou-Arab, E.A. 2011. Physico-chemical properties of natural pigments (anthocyanin) extracted from Roselle calyces (Hibiscus sabdariffa). Journal of American Science 7(7): 445-456.
  2. Ali, B.H., Wabel, N.A., Blunden, G. 2005. Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: A review. Phytotheraphy Research 19:369–375. DOI:10.1002/ptr.1628.
  3. Boas, A.C.V., Henrique, P.C., Lima, L.C.O., Neto, A.D. 2014. Antioxidant activity, anthocyanins and organic acids content of grape juices produced in southwest of minas gerais, Brazil. Ciência e Agrotecnologia Lavras 38(5): 480-486. DOI: 10.1590/S1413-70542014000500007.
  4. Bridle, P., Timberlake, C.F. 1997. Anthocyanins as natural food colours-selected aspects. Food Chemistry 58(1-2): 103-109. DOI: 10.1016/S0308-8146(96)00222-1.
  5. Casati C.B., Baeza R., Sanchez V., Catalano A., López P., Zamora MC. 2015. Thermal degradation kinetics of monomeric anthocyanins, colour changes and storage effect in elderberry juices, Journal of Berry Research 5: 29–39. DOI: 10.3233/JBR-150088.
  6. Castaneda-Ovando, A., Pacheco-Hernández, Ma. de Lourdes., Páez-Hernández, Ma. Elena.,Rodríguez, José A., Galán-Vidal, C.A. 2009. Chemical studies of anthocyanins : A review, Elsevier Science B.V. Vol. 113; No. 4 : 859-871. DOI:10.1016/j.foodchem.2008.09.001.
  7. Cissé, M., Bohuon, P., Sambe, F., Kane, C., Sakho, M., Dornier, M. 2012. Aqueous extraction of anthocyanins from Hibiscus sabdariffa: Experimental kinetics and modeling. Journal of Food Engineering 109: 16–21. DOI: 10.1016/j.jfoodeng.2011.10.012.
  8. Da-Costa-Rocha, I., Bonnlaender, B ., Sievers, H., Pischel, I., Heinrich, M. 2014. Hibiscus sabdariffa L. – A phytochemical and pharmacological review. Food Chemistry 165 : 424–443. DOI: 10.1016/j.foodchem.2014.05.002.
  9. Delgado-Vargas, F., Paredes-López, O. 2003. Natural colorants for food and nutraceutical uses, CRC Press. United State of America.
  10. Doyle, M.P. 1980. Experimental Organic Chemistry. John Willey and Sons. Inc., New York.
  11. Elbe, J.H.V., Schwartz, T.J. Colorants. Di dalam: Fennema, Owen. R. 1996. Food Chemistry. New York: Marcell Dekker.
  12. Faria, A., Fernandes, I., Mateus, N., Calhau, C. 2013. Natural Products : Bioavailability of Anthocyanins. Springer-Verlag Berlin Heidelberg. DOI 10.1007/978-3-642-22144-6-75.
  13. Fernandes, I., Faria, A., Calhau, C., de Freitas, V., Mateus, N. 2014. Bioavailability of anthocyanins and derivatives. Journal of Functional Foods 7. 54-66. DOI: 10.1016/j.jff.2013.05.010.
  14. Gholivand, M.B., Piryaei, M. 2014. Total phenols, flavonoids, anthocyanins, ascorbic acid contents and antioxidant activity of Rhamnus kurdica Boiss for flower and leaves in flowering and preflowering stages. African Journal of Biotechnology 13(10): 1131-1135. DOI: 10.5897/AJB12.2461.
  15. Herrera-Arellano, A., Miranda-Sanchez, J., Avila-Castro, P., Herrera-Alvarez, S., Jimenez-Ferrer, J.E., Zamilpa, A., Roman-Ramos, R., Ponce-Monter, H., Tortoriello, J. 2007. Clinical effects produced by a standardized herbal medicinal product of Hibiscus sabdariffa on patients with hypertension. A randomized, double-blind, lisinopril-controlled clinical trial. Planta Medica 73: 6–12. DOI: 10.1055/s-2006-957065.
  16. HE Xiu-li., LI Xue-li., Yuan-ping L.V., Qiang, H.E. 2015. Composition and color stability of anthocyanin-based extract from purple sweet potato, Food Science and Technology 35(3): 468-473, Campinas. DOI: 10.1590/1678-457X.6687.
  17. Inggrid, H.M, Jaka, Santoso, H. Natural red dyes extraction on roselle petals. 2017. Second International Conference on Chemical Engineering (ICCE) UNPAR. IOP Conference. Series: Materials Science and Engineering 162: 012029. DOI: 10.1088/1757-899X/162/1/012029.
  18. Ioannou, I., Hafsa, I., Hamdi, S., Charbonnel, C. Ghoul, M. 2012. Review of the effects of food processing and formulation on flavonol and anthocyanin behavior. Journal of Food Engineering 111:208–217. DOI: 10.1016/j.jfoodeng.2012.02.006.
  19. Janna, O., Khairul, A., Maizah, M., Mohd, M.Y. 2006. Flower Pigment Analysis of Melastoma malabattricum, Journal of African Biotechnology 5 (2):170-174.
  20. Kouakou, T.H., Konkon, N.G, Ayolié, K., Obouayeba, A.P., Abeda, Z.H., Koné, M. 2015. Anthocyanin production in calyx and callus of Roselle (Hibiscus sabdariffa L.) and its impact on antioxidant activity. Journal of Pharmacognosy and Phytochemistry 4(3): 09-15.
  21. Lestario, N.L. 2017. Antosianin : Sifat kimia, Perannya dalam kesehatan, dan Prospeknya sebagai Pewarna Makanan. Gadjah Mada University Press. Yogyakarta. Indonesia.
  22. Lima, A.D.J., Corrêa, A.D., Saczk, A.A., Martins, M.P., Castilho, R.O. 2011. anthocyanins, pigment stability and antioxidant activity in Jabuticaba [Myrciaria cauliflora (Mart.) O. Berg]. Revista Brasileira de Fruticultura 33 (3):877-887. DOI: 10.1590/S0100-29452011000300023.
  23. Ma, C., Yang, L., Yang, F., Wang, W., Zhao, C., Zu, Y. 2012. Content and color stability of anthocyanins isolated from Schisandra chinensis fruit. International Journal of Molecular Sciences 13: 14294-14310. DOI:10.3390/ijms131114294.
  24. Mahfud, T. 2018. Ekstraksi pewarna alami kelopak bunga rosella (Hisbiscus sabdariffa) pada pembuatan minuman serbuk instan rosella. Jurnal Sains Terapan No. 1 (1). DOI: 10.32487/ jst.v1i1.29.
  25. Markakis, P. 1982. Anthocyanin as food colors. Academica Press. New York : 214-266.
  26. McKay, D.L., Chen, C.Y.O., Saltzman, E., Blumberg, J.B. 2010. Hibiscus sabdariffa L. Tea (Tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults. The Journal of Nutrition. 140: 298–303. DOI:10.3945/jn.109. 115097.
  27. Mokrzycki W.S., Tatol M. 2012. Colour difference ∆E - A survey. Faculty of Mathematics and Informatics University of Warmia and Mazury, Sloneczna 54, Olsztyn, Poland.
  28. Moldovan B., David L., Chişbora C., Cimpoiu C. 2012. Degradation kinetics of anthocyanins from european cranberrybush (Viburnum opulus L.) fruit extracts. Effects of temperature, pH and storage solvent. Molecules 17:11655-11666. DOI: 10.3390/molecules171011655.
  29. Patras, A., Brunton, N.P., O’donnell, C., Tiwari, B.K. 2010. Effect of therma processing on anthocyanin stability in foods; Mechanisms and kinetics of degradation a review. Trends in Food Science & Technology 21:3-11. DOI: 10.1016/j.tifs.2009. 07.004.
  30. Prommakool, A., Phattayakorn K. 2016. The Storage stability of anthocyanins in Mao (Antidesma thwaitesianum Müll. Arg.) juice and concentrate. MATEC Web of Conferences. 62: 02006. ICCFE. DOI: 10.1051/ matecconf/ 20166202006.
  31. Reyes, L.F., Cisneros-Zevallos, L. 2007. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple and red flesh potatoes (Solanum tuberosum L.). Food Chemistry 100:885-894. DOI: 10.1016/j.foodchem.2005.11.002.
  32. Santoso, U. 2016. Antioksidan Pangan. Gadjah Mada University Press. Yogyakarta.
  33. Shao-qian, C.A.O., Liang, LIU., Si-yi, P.A.N. 2011. Thermal degradation kinetics of anthocyanins and visual color of blood orange juice. Agricultural Sciences in China 10(12): 1992-1997. DOI: 10.1016/S1671 2927(11)60201-0.
  34. Shin, S., Bhowmik, S.R. 1995. Thermal kinetic of colour changes in pea puree. Journal of Food Engineering 24(1): 77-86. DOI: 10.1016/0260-8774(94)P1609-2.
  35. Sindi, H.A., Marshall, L.J., Morgan, M.R.A. 2014. Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa. Food Chemistry 164:23–29. DOI:10.1016/j.foodchem.2014. 04.097.
  36. Sipahli, S., Viresh, M., Jason, M.J. 2017. Stability and degradation kinetics of crude anthocyanin extracts from H. sabdariffa. Food Science and Technology 37(2):209-215. Campinas. DOI:10.1590/1678-457X.14216.
  37. Sui, X., Bary, S., Zhou, W. 2016. Changes in the color, chemical stability and antioxidant capacity of thermally treated anthocyanin aqueous solution over storage. Food Chemistry 192: 516–524. DOI: 10.1016/j.foodchem.2015.07.021.
  38. Sayago-Ayerdi, S.G., Arranz, S., Serrano, J., Goni, I. 2007. Dietary fiber content and associated antioxidant compounds in roselle flower (Hibiscus sabdariffa L.) beverage. Journal of Agriculture Food Chemistry 55:7886–90. DOI: 10.1021/ jf070485b.
  39. Sindi, H.A., Marshall, L.J., Morgan, M.R.A. 2014. Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa. Food Chemistry 164:23–29. DOI: 10.1016/j.foodchem.2014. 04.097.
  40. Vatai, T., Skerget, M., Knez, Z., Kareth, S., Wehowski, M., Weidner, E. 2008. Extraction and formulation of anthocyanin-concentrates from grape residues. Journal of Supercritical Fluids 45:32–36. DOI: 10.1016/j.supflu.2007.12.008.
  41. Wells, M.J.M. 2003. Principles of extraction and the extraction of semivolatile organics from liquids. Sample Preparation Techniques in Analytical Chemistry 162:37.
  42. Wrolstad, R.E., Terry, E.A., Eric, Decker, A., Michael, H.P., David, S.R., Steven, J.S., Charles, F.S., Denise, M.S., Peter, S. 2005. Handbook of Food Analytical Chemistry. Wiey Interscience., Publication. New Jersey.
  43. Yang, L., Gou, Y., Zhao, T., Zhao, J., Li, F., Zhang, B., Wu, X. 2012. Antioxidant capacity of extracts from calyx fruits of roselle (Hibiscus sabdariffa L.). African Journal of Biotechnology 11(17):4063-4068. DOI:10.5897/AJB11.2227.