JAFT • pISSN 2355-9152 • eISSN 2614-7076 • Member of CrossRef®
skip to main content

Evaluation of Effects of Specific Bioactive Compounds in Plant, Propolis and Bee-Pollen on Crohn’s Disease: A Food Nutrition Approach

Leila Mehdizadehtapeh  -  Department of Nutrition and Dietetics, Recep Tayyip Erdoğan University, Rize, Türkiye, Turkey
Nesli Nur Mercan  -  Department of Nutrition and Dietetics, Istanbul Sabahattin Zaim University, Istanbul, Türkiye, Turkey
Ceren Demir  -  Department of Nutrition and Dietetics, Istanbul Sabahattin Zaim University, Istanbul, Türkiye, Turkey
Mehmet Özbil  -  Department of Biotechnology, Gebze Technical University, Kocaeli, Türkiye, Turkey
Hüseyin Abdik  -  Department of Molecular Biology and Genetics, Istanbul Sabahattin Zaim University, Istanbul, Türkiye, Turkey
Sinem Nur Açıkgöz  -  Department of Biotechnology, Gebze Technical University, Kocaeli, Türkiye, Turkey
Serap Andaç  -  Department of Nutrition and Dietetics, Istanbul Sabahattin Zaim University, Istanbul, Türkiye, Turkey
Ahmad Nimatullah Al-Baarri  -  Department of Animal and Agricultural Sciences, Diponegoro University, Semarang, Indonesia, Indonesia
*İsmail Hakkı Tekiner orcid scopus  -  Independent Researcher, Istanbul, Türkiye, Turkey
Open Access Copyright 2025 Journal of Applied Food Technology

Citation Format:
Abstract

Natural foods rich in bioactive compounds (BC) may provide an effective strategy for food and nutrition-based Crohn's disease (CD) management. However, their BCs’ alone and combined effects have not been explored sufficiently. This study aims to evaluate the impact of specific BCs in plants, propolis, and bee pollen on CD by in silico and in vitro techniques. For this, the plants suggested in a clinical database were screened in another curated therapeutic database to obtain specific BCs with therapeutic use identifiers. In contrast, those of propolis and bee pollen were obtained from previously conducted publications. The identified BCs were subjected to in silico molecular docking simulations (MDS) to determine their binding affinity scores (BAS) with aryl hydrocarbon receptor (Ahr). Of them, two with the highest affinity score (AS) and the other two with the lowest AS were selected. Their cytotoxic effects on HCT-116 Human colon cancer cells were tested by in vitro MTS assay, while up- and downregulating effects on Ahr-related CYP1A1, CYP1B1, IDO1, and IDO2 genes by real-time qPCR. The findings demonstrated that MDS studies determined the highest BAS with Ahr to be β-carotene (β-C) (-8.99 kcal/mol) and biotin (B) (-6.39 kcal/mol). In comparison, the lowest BAS was to inositol (I) (-5.34 kcal/mol) and niacin (N) (-5.32 kcal/mol), respectively. In vitro MTS assay demonstrated that N and I were cytotoxic on HCT-116 cells, while β-C was noncytotoxic. But B did not exhibit any significant effect. The gene expression test showed that β-C downregulated IDO1 and IDO2, while B downregulated IDO1 only. On the other hand, N downregulated both CYP1A1 and IDO2, whereas I downregulated CYP1A1 only. β-C and B in combination upregulated all genes, but N and I downregulated them. In conclusion, proper selection of BC may effectively moderate CD pathogenesis and management with its protective and anti-inflammatory properties. We therefore suggest food and nutrition-associated research at preclinical and clinical levels.

Fulltext View|Download
Keywords: plant; bee pollen; propolis; Crohn’s disease; food; nutrition; health
Funding: n/a

Article Metrics:

  1. Abdik, H. 2022. Antineoplastic effects of erufosine on small cell and non-small cell lung cancer cells through induction of apoptosis and cell cycle arrest. Molecular Biology Reports 49(4): 2963-2971. DOI: 10.1007/s11033-022-07117-6
  2. Ala M. 2022. Tryptophan metabolites modulate inflammatory bowel disease and colorectal cancer by affecting immune system. International reviews of immunology 41(3): 326–345. DOI: 10.1080/08830185.2021.1954638
  3. Alexandrescu, L., Nicoara, A. D., Tofolean, D. E., Herlo, A., Nelson Twakor, A., Tocia, C., Trandafir, A., Dumitru, A., Dumitru, E., Aftenie, C. F., Preotesoiu, I., Dina, E. and Tofolean, I. T. 2024. Healing from Within: How Gut Microbiota Predicts IBD Treatment Success-A Systematic Review. International Journal of Molecular Sciences 25(15): 8451. DOI: 10.3390/ijms25158451
  4. Androutsopoulos, V. P., Spyrou, I., Ploumidis, A., Papalampros, A., Kyriakakis, M., Delakas, D., Spandidos, D. A. and Tsatsakis, A. 2013. Expression Profile of CYP1A1 and CYP1B1 Enzymes in Colon and Bladder Tumors. PLOS ONE 8(12): e82487. DOI: 10.1371/journal.pone.0082487
  5. Badodi, S., Pomella, N., Zhang, X., Rosser, G., Whittingham, J., Niklison-Chirou, M. V., Lim, Y. Y., Brandner, S., Morrison, G., Pollard, S. M., Bennett, C., Clifford, S. C., Peet, A. C., Basson, M. A. and Marino, S. 2021. Inositol treatment inhibits medulloblastoma through suppression of epigenetic-driven metabolic adaptation. Nature Communications 12: 2148. DOI: 10.1038/s41467-021-22379-7
  6. Benvenga, S., Nordio, M., Laganà, A. S. and Unfer, V. 2021. The Role of Inositol in Thyroid Physiology and in Subclinical Hypothyroidism Management. Frontiers in endocrinology 12: 662582. DOI: 10.3389/fendo.2021.662582
  7. Bungsu, I., Kifli, N., Ahmad, S. R., Ghani, H. and Cunningham, A. C. 2021. Herbal Plants: The Role of AhR in Mediating Immunomodulation. Frontiers in immunology 12: 697663. DOI: 10.3389/fimmu.2021.697663
  8. Caban, M. and Lewandowska, U. 2022. Polyphenols and the potential mechanisms of their therapeutic benefits against inflammatory bowel diseases. Journal of Functional Foods 95: 105181. DOI: 10.1016/j.jff.2022.105181
  9. Cai, Z., Wang, S. and Li, J. 2021. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Frontiers in Medicine 8: 765474. DOI: 10.3389/fmed.2021.765474
  10. Cella, M. and Colonna, M. 2015. Aryl hydrocarbon receptor: Linking environment to immunity. Seminars in immunology 27(5): 310–314. DOI: 10.1016/j.smim.2015.10.002
  11. Chatree, S., Thongmaen, N., Tantivejkul, K., Sitticharoon, C. and Vucenik, I. 2020. Role of Inositols and Inositol Phosphates in Energy Metabolism. Molecules (Basel, Switzerland) 25(21): 5079. DOI: 10.3390/molecules25215079
  12. Chen, S., Zhao, H., Cheng, N. and Cao, W. 2019. Rape bee pollen alleviates dextran sulfate sodium (DSS)-induced colitis by neutralizing IL-1β and regulating the gut microbiota in mice. Food Research International (Ottawa, Ont.) 122: 241-251
  13. Chen, G., Li, Y., Li, X., Zhou, D., Wang, Y., Wen, X., Wang, C., Liu, X., Feng, Y. P., Li, B. and Li, N. 2021. Functional foods and intestinal homeostasis: The perspective of in vivo evidence. Trends in Food Science and Technology 111: 475–482. DOI: 10.1016/j.tifs.2021.02.075
  14. Chen, J., Ruan, X., Yuan, S., Deng, M., Zhang, H., Sun, J., Yu, L., Satsangi, J., Larsson, S. C., Therdoratou, E., Wang, X. and Li, X. 2023. Antioxidants, minerals and vitamins in relation to Crohn's disease and ulcerative colitis: A Mendelian randomization study. Alimentary Pharmacology & Therapeutics 57(4): 399–408. DOI: 10.1111/apt.17392
  15. Chen, L., Srinivasan, A. and Vasudevan, A. 2024. Examining dietary interventions in Crohn's disease. World Journal of Gastroenterology 30(34): 3868–3874. DOI: 10.3748/wjg.v30.i34.3868Cheng,J.,Balbuena,E.,Miller,B.,andEroglu,A.2021.TheRoleofβ-CaroteneinColonicInflammationandIntestinalBarrierIntegrity.FrontiersinNutrition8:723480
  16. Christensen, C., Knudsen, A., Arnesen, E. K., Hatlebakk, J. G., Sletten, I. S. and Fadnes, L. T. 2024. Diet, Food, and Nutritional Exposures and Inflammatory Bowel Disease or Progression of Disease: an Umbrella Review. Advances in Nutrition (Bethesda, Md.) 15(5): 100219. DOI: 10.1016/j.advnut.2024.100219
  17. Coelho, N. R., Pimpão, A. B., Correia, M. J., Rodrigues, T. C., Monteiro, E. C., Morello, J. and Pereira, S. A. 2022. Pharmacological blockage of the AHR-CYP1A1 axis: a call for in vivo evidence. Journal of Molecular Medicine (Berlin, Germany) 100(2): 215–243. DOI: 10.1007/s00109-021-02163-2
  18. Da Silva, L. M., De Souza, P. B., Jaouni, S. K. A., Harakeh, S., Golbabapour, S. and De Andrade, S. F. 2018. Propolis and Its Potential to Treat Gastrointestinal Disorders. Evidence-Based Complementary and Alternative Medicine: eCAM 2018: 2035820. DOI: 10.1155/2018/2035820
  19. Darwish, W. S., Ikenaka, Y., Nakayama, S. M., Mizukawa, H. And Ishizuka, M. 2016. Constitutive Effects of Lead on Aryl Hydrocarbon Receptor Gene Battery and Protection by β-carotene and Ascorbic Acid in Human HepG2 Cells. Journal of Food Science 81(1): T275–T281. DOI: 10.1111/1750-3841.13162
  20. De Juan, A. and Segura, E. 2021. Modulation of Immune Responses by Nutritional Ligands of Aryl Hydrocarbon Receptor. Frontiers in Immunology 12: 645168. DOI: 10.3389/fimmu.2021.645168
  21. Dinicola, S., Minini, M., Unfer, V., Verna, R., Cucina, A. and Bizzarri, M. 2017. Nutritional and Acquired Deficiencies in Inositol Bioavailability. Correlations with Metabolic Disorders. International Journal of Molecular Sciences 18(10): 2187. DOI: 10.3390/ijms18102187
  22. Divi, R. L., Lindeman, T. L. E., Shockley, M. E., Keshava, C., Weston, A. and Poirier, M. C. 2014. Correlation between CYP1A1 transcript, protein level, enzyme activity and DNA adduct formation in normal human mammary epithelial cell strains exposed to benzo[a]pyrene. Mutagenesis 29(6): 409–417. DOI: 10.1093/mutage/geu049
  23. Dolinger, M., Torres, J. and Vermeire, S. 2024. Crohn's disease. Lancet 403(10432): 1177-1191. DOI: 10.1016/S0140-6736(23)02586-2
  24. Dutour, R. and Poirier, D. 2017. Inhibitors of cytochrome P450 (CYP) 1B1. European Journal of Medicinal Chemistry 135: 296–306. DOI: 10.1016/j.ejmech.2017.04.042
  25. Epstein H. 2023. A Second Look at Niacin. Skinmed 21(6): 431–432
  26. Erbach, J., Bonn, F., Diesner, M., Arnold, A., Stein, J., Schröder, O. and Aksan, A. 2022. Relevance of Biotin Deficiency in Patients with Inflammatory Bowel Disease and Utility of Serum 3 Hydroxyisovaleryl Carnitine as a Practical Everyday Marker. Journal of Clinical Medicine 11(4): 1118. DOI: 10.3390/jcm11041118
  27. Filannino, P., Di Cagno, R., Vincentini, O., Pinto, D., Polo, A., Maialetti, F., Porrelli, A. and Gobbetti, M. 2021. Nutrients Bioaccessibility and Antiinflammatory Features of Fermented Bee Pollen: A Comprehensive Investigation. Frontiers in Microbiology 12: 622091. DOI: 10.3389/fmicb.2021.622091
  28. Friedman M. 2018. Analysis, Nutrition, and Health Benefits of Tryptophan. International Journal of Tryptophan Research 11: 1178646918802282. DOI: 10.1177/1178646918802282
  29. Geesala, R., Gongloor, P., Recharla, N. and Shi, X. Z. 2024. Mechanisms of Action of Exclusive Enteral Nutrition and Other Nutritional Therapies in Crohn's Disease. Nutrients 16(21): 3581. DOI: 10.3390/nu16213581
  30. Ghiboub, M., Verburgt, C. M., Sovran, B., Benninga, M. A., de Jonge, W. J. and Van Limbergen, J. E. 2020. Nutritional Therapy to Modulate Tryptophan Metabolism and Aryl Hydrocarbon-Receptor Signaling Activation in Human Diseases. Nutrients 12(9): 2846. DOI. 10.3390/nu12092846
  31. Goya-Jorge, E., Jorge Rodríguez, M. E., Veitía, M. S. and Giner, R. M. 2021. Plant Occurring Flavonoids as Modulators of the Aryl Hydrocarbon Receptor. Molecules (Basel, Switzerland) 26(8): 2315. DOI: 10.3390/molecules26082315
  32. Gravina, A. G., Pellegrino, R., Palladino, G., Coppola, A., Brandimarte, G., Tuccillo, C., Ciardiello, F., Romano, M. and Federico, A. 2023. Hericium erinaceus, in combination with natural flavonoid/alkaloid and B3/B8 vitamins, can improve inflammatory burden in Inflammatory bowel diseases tissue: an ex vivo study. Frontiers in Immunology 14: 1215329. DOI: 10.3389/fimmu.2023.1215329
  33. Green, M. R. and Sambrook, J. 2021. Biotin. Cold Spring Harbor Protocols 2021(10): 10.1101/pdb.top100776. DOI: 10.1101/pdb.top10
  34. Grieshober, L., Graw, S., Barnett, M. J., Thornquist, M. D., Goodman, G. E., Chen, C., Koestler, D. C., Marsit, C. J. and Doherty, J. A. 2020. AHRR methylation in heavy smokers: associations with smoking, lung cancer risk, and lung cancer mortality. BMC Cancer 20(1): 905. DOI: 10.1186/s12885-020-07407-x
  35. Hara, T., Meng, S., Motooka, D., Sato, H., Arao, Y., Tsuji, Y., Yabumoto, T., Doki, Y., Eguchi, H., Uchida, S. and Ishii, H. 2024. Fat and proteolysis due to methionine, tryptophan, and niacin deficiency leads to alterations in gut microbiota and immune modulation in inflammatory bowel disease. Cancer Science 115(7): 2473–2485. DOI: 10.1111/cas.16153
  36. He, Y., He, L., Khoshaba, R., Lu, F., Cai, C., Zhou, F., Liao, D. and Cao, D. 2019. Curcumin Nicotinate Selectively Induces Cancer Cell Apoptosis and Cycle Arrest through a P53-Mediated Mechanism. Molecules 24(22): 4179. DOI: 10.3390/molecules24224179
  37. Hui, S., Heng, L., Shaodong, W., Fangyu, W., and Zhenkai, W. 2017. Pellagra affecting a patient with Crohn's disease. Anais Brasileiros de Dermatologia 92(6): 879–881
  38. Huang, Y. M., Chen, W., Potter, M. J., and Chang, C. E. 2012. Insights from free-energy calculations: protein conformational equilibrium, driving forces, and ligand-binding modes. Biophysical journal 103(2): 342–351. DOI: 10.1016/j.bpj.2012.05.046
  39. Jagtap, A. G., Shirke, S. S. and Phadke, A. S. 2004. Effect of polyherbal formulation on experimental models of inflammatory bowel diseases. Journal of Ethnopharmacology 90(2-3): 195-204
  40. Jaronen, M. and Quintana, F. J. 2014. Immunological Relevance of the Coevolution of IDO1 and AHR. Frontiers in Immunology 5: 521. DOI: 10.3389/fimmu.2014.00521
  41. Kim, S. W., Lee, J. H., Moon, J. H., Nazim, U. M., Lee, Y. J., Seol, J. W., Hur, J., Eo, S. K., Lee, J. H. and Park, S. Y. 2016. Niacin alleviates TRAIL-mediated colon cancer cell death via autophagy flux activation. Oncotarget 7(4): 4356–4368. DOI. 10.18632/oncotarget.5374
  42. Kim, D. H., Venkataraman, A., Jain, P. C., Wiesler, E. P., DeBlasio, M., Klein, J. D., Tu, S., Lee, S., Medzhitov, R. and Iwasaki, A. 2020. Vitamin B12 and folic acid alleviate symptoms of nutritional deficiency by antagonizing aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America 117(27): 15837–15845. DOI: 10.1073/pnas.2006949117
  43. Komosinska-Vassev, K., Olczyk, P., Kaźmierczak, J., Mencner, L. and Olczyk, K. 2015. Bee pollen: chemical composition and therapeutic application. Evidence-based complementary and alternative medicine: eCAM 2015: 297425. DOI: 10.1155/2015/297425
  44. Krieger, E. and Vriend, G. 2002a. Bioinformatics. Bioinformatics 18(2): 315
  45. Krieger, E., Koraimann, G. and Vriend, G. 2002b. Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins Structure Function and Bioinformatics 47(3): 393–402. DOI: 10.1002/prot.10104
  46. Krieger, E., Nielsen, J. E., Spronk, C. A. and Vriend, G. 2006. Fast empirical pKa prediction by Ewald summation. Journal of Molecular Graphics & Modelling 25(4): 481–486. DOI: 10.1016/j.jmgm.2006.02.009
  47. Krieger, E., Dunbrack, R. L., Jr, Hooft, R. W. and Krieger, B. 2012. Assignment of protonation states in proteins and ligands: combining pKa prediction with hydrogen bonding network optimization. Methods in Molecular Biology (Clifton, N.J.) 819: 405–421. DOI: 10.1007/978-1-61779-465-0_25
  48. Kuehn, F., Mullins, C. S., Krohn, M., Harnack, C., Ramer, R., Krämer, O. H., Klar, E., Huehns, M., and Linnebacher, M. 2016. Establishment and characterization of HROC69 - a Crohn´s related colonic carcinoma cell line and its matched patient-derived xenograft. Scientific reports 6, 24671
  49. Kuriata, A., Gierut, A. M., Oleniecki, T., Ciemny, M. P., Kolinski, A., Kurcinski, M. And Kmiecik, S. 2018. CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucleic Acids Research 46(W1): W338–W343. DOI: 10.1093/nar/gky356
  50. Labriola, F., Marcato, C., Zarbo, C., Betti, L., Catelli, A., Valerii, M. C., Spisni, E. and Alvisi, P. 2022. Dietary Habits of a Group of Children with Crohn's Disease Compared to Healthy Subjects: Assessment of Risk of Nutritional Deficiencies through a Bromatological Analysis. Nutrients 14(3): 499. DOI. 10.3390/nu14030499
  51. Lamas, B., Natividad, J. M. and Sokol, H. 2018. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunology 11(4): 1024–1038. DOI: 10.1038/s41385-018-0019-2
  52. Laaroussi, H., Bakour, M., Ousaaid, D., Aboulghazi, A., Ferreira-Santos, P., Genisheva, Z., Teixeira, J. A., and Lyoussi, B. 2020. Effect of antioxidant-rich propolis and bee pollen extracts against D-glucose induced type 2 diabetes in rats. Food Research International 138(Pt B): 109802. DOI: 10.1016/j.foodres.2020.109802
  53. Lee, A., Kanuri, N. D., Zhang, Y., Sayuk, G. S., Li, E. and Ciorba, M. A. 2014. IDO1 and IDO2 Non-Synonymous Gene Variants: Correlation with Crohn’s Disease Risk and Clinical Phenotype. PLOS ONE 9(12): e115848. DOI: 10.1371/journal.pone.0115848
  54. Li, Q., Liang, X., Guo, N., Hu, L., Prasad, E. M., Wu, Y., Xue, X., Wu, L. and Wang, K. 2019. Protective effects of Bee pollen extract on the Caco-2 intestinal barrier dysfunctions induced by dextran sulfate sodium. Biomedicine & Pharmacotherapy 117: 109200. DOI: 10.1016/j.biopha.2019.109200
  55. Nascimento, R. S. D., Moya, A. M. T. M., Da Fonseca Machado, A. P., Geraldi, M. V., Diez-Echave, P., Vezza, T., Gálvez, J., Cazarin, C. B. B. and Júnior, M. R. M. 2021. Review on the potential application of non-phenolic compounds from native Latin American food byproducts in inflammatory bowel diseases. Food Research International 139: 109796. DOI: 10.1016/j.foodres.2020.109796
  56. Nikolaus, S., Schulte, B., Al-Massad, N., Thieme, F., Schulte, D. M., Bethge, J., Rehman, A., Tran, F., Aden, K., Häsler, R., Moll, N., Schütze, G., Schwarz, M. J., Waetzig, G. H., Rosenstiel, P., Krawczak, M., Szymczak, S. and Schreiber, S. 2017. Increased Tryptophan Metabolism Is Associated With Activity of Inflammatory Bowel Diseases. Gastroenterology 153(6): 1504–1516. DOI: 10.1053/j.gastro.2017.08.028
  57. Okabe, N., Urabe, K., Fujita, K., Yamamoto, T., Yao, T., and Doi, S. 1988. Biotin effects in Crohn's disease. Digestive Diseases and Sciences 33(11): 1495–1496
  58. Ortega, J. T., Jastrzebska, B. and Rangel, H. R. 2021. Omicron SARS-CoV-2 Variant Spike Protein Shows an Increased Affinity to the Human ACE2 Receptor: An In Silico Analysis. Pathogens (Basel, Switzerland) 11(1): 45. DOI: 10.3390/pathogens11010045
  59. Palozza, P., Sestito, R., Picci, N., Lanza, P., Monego, G. and Ranelletti, F. O. 2008. The sensitivity to beta-carotene growth-inhibitory and proapoptotic effects is regulated by caveolin-1 expression in human colon and prostate cancer cells. Carcinogenesis 29(11): 2153–2161. DOI: 10.1093/carcin/bgn018
  60. Panda, S. K., Peng, V., Sudan, R., Ulezko Antonova, A., Di Luccia, B., Ohara, T. E., Fachi, J. L., Grajales-Reyes, G. E., Jaeger, N., Trsan, T., Gilfillan, S., Cella, M. and Colonna, M. 2023. Repression of the aryl-hydrocarbon receptor prevents oxidative stress and ferroptosis of intestinal intraepithelial lymphocytes. Immunity 56(4): 797–812. DOI: 10.1016/j.immuni.2023.01.023
  61. Patra, P., Ghosh, P., Patra, B. C. and Bhattacharya, M. 2019. Biocomputational Analysis and In Silico Characterization of an Angiogenic Protein (RNase5) in Zebrafish (Danio rerio). International Journal of Peptide Research and Therapeutics 26(4): 1687–1697. DOI: 10.1007/s10989-019-09978-1
  62. Pernomian, L., Duarte-Silva, M., and de Barros Cardoso, C. R. 2020. The Aryl Hydrocarbon Receptor (AHR) as a Potential Target for the Control of Intestinal Inflammation: Insights from an Immune and Bacteria Sensor Receptor. Clinical reviews in allergy & immunology 59(3): 382–390
  63. Perry, C. A. and Butterick, T. A. 2024. Biotin. Advances in Nutrition (Bethesda, Md.) 15(7): 100251. DOI: 10.1016/j.advnut.2024.100251
  64. Peterson, C. T., Rodionov, D. A., Osterman, A. L. and Peterson, S. N. 2020. B Vitamins and Their Role in Immune Regulation and Cancer. Nutrients 12(11): 3380. DOI: 10.3390/nu12113380
  65. Przybyłek, I. and Karpiński, T. M. 2019. Antibacterial Properties of Propolis. Molecules 24(11): 2047. DOI: 10.3390/molecules24112047
  66. Rannug, A. 2020. How the AHR Became Important in Intestinal Homeostasis—A Diurnal FICZ/AHR/CYP1A1 Feedback Controls Both Immunity and Immunopathology. International Journal of Molecular Sciences 21(16): 5681. DOI: 10.3390/ijms21165681
  67. Rodriguez-Melendez, R., Griffin, J. B. and Zempleni, J. 2004. Biotin Supplementation Increases Expression of the Cytochrome P450 1B1 Gene in Jurkat Cells, Increasing the Occurrence of Single-Stranded DNA Breaks. Journal of Nutrition 134(9): 2222–2228. DOI: 10.1093/jn/134.9.2222
  68. Ronquillo-Sánchez, M. D., Camacho-Carranza, R., Fernandez-Mejia, C., Hernández-Ojeda, S., Elinos-Baez, M. and Espinosa-Aguirre, J. J. 2013. Modulation of the rat hepatic cytochrome P4501A subfamily using biotin supplementation. BioMed Research International 2013: 627907. DOI: 10.1155/2013/627907
  69. Salazar, F., Awuah, D., Negm, O. H., Shakib, F. and Alexander, C. 2017. The role of indoleamine 2,3-dioxygenase-aryl hydrocarbon receptor pathway in the TLR4-induced tolerogenic phenotype in human DCs. Scientific Reports 7(1): 43337. DOI: 10.1038/srep43337
  70. Sato, Y., Tsujinaka, S., Miura, T., Kitamura, Y., Suzuki, H., and Shibata, C. 2023. Inflammatory Bowel Disease and Colorectal Cancer: Epidemiology, Etiology, Surveillance, and Management. Cancers 15(16): 4154
  71. Satomi, Y. and Nishino, H. 2013. Inhibition of the enzyme activity of cytochrome P450 1A1, 1A2 and 3A4 by fucoxanthin, a marine carotenoid. Oncology Letters 6(3): 860–864. DOI: 10.3892/ol.2013.1457
  72. Savitz J. 2020. The kynurenine pathway: a finger in every pie. Molecular Psychiatry 25(1): 131–147. DOI: 10.1038/s41380-019-0414-4
  73. Schulte, K. W., Green, E., Wilz, A., Platten, M. and Daumke, O. 2017. Structural Basis for Aryl Hydrocarbon Receptor-Mediated Gene Activation. Structure 25(7): 1025–1033. DOI: 10.1016/j.str.2017.05.008
  74. Shehada, M. and McMahon, L. E. 2024. Recurrent Crohn's disease. Seminars in Pediatric Surgery 33(2): 151403. DOI: 10.1016/j.sempedsurg.2024.151403
  75. Sigall Boneh, R., Westoby, C., Oseran, I., Sarbagili-Shabat, C., Albenberg, L. G., Lionetti, P., Manuel Navas-López, V., Martín-de-Carpi, J., Yanai, H., Maharshak, N., Van Limbergen, J. and Wine, E. 2024. The Crohn's Disease Exclusion Diet: A Comprehensive Review of Evidence, Implementation Strategies, Practical Guidance, and Future Directions. Inflammatory Bowel Diseases 30(10): 1888–1902. DOI: 10.1093/ibd/izad255
  76. Sila, S. and Hojsak, I. 2024. Nutritional Management for Crohn's Disease. Nutrients 16(16): 2597. DOI: 10.3390/nu16162597
  77. Soleimani, D., Miryan, M., Roshanravan, N., Navashenaq, J. G., Sadeghi, E., Ghayour-Mobarhan, M., Ferns, G. A. and Ostadrahimi, A. 2021. A systematic review of preclinical studies on the efficacy of propolis for the treatment of inflammatory bowel disease. Phytotherapy Research 35(2): 701–710. DOI: 10.1002/ptr.6856
  78. Song, Y., Zhu, L. and Zheng, X. 2024. β-carotene inhibits MAPKs signaling pathways on rat colonic epithelial cells to attenuate TNF-α-induced intestinal inflammation and injury. Cell Biochemistry and Biophysics 82(1): 291–302. DOI: 10.1007/s12013-023-01202-8
  79. Spagnuolo, R., Cosco, C., Mancina, R. M., Ruggiero, G., Garieri, P., Cosco, V. and Doldo, P. 2017. Beta-glucan, inositol and digestive enzymes improve quality of life of patients with inflammatory bowel disease and irritable bowel syndrome. European Review for Medical and Pharmacological Sciences 21(2 Suppl): 102–107
  80. Su, J., Liu, L., Wang, R., Li, C., Wang, Z., Xu, Q., Shen, C., Wu, D. and Zhao, D. 2024. Association between dietary β-carotene intake with Parkinson's disease and all-cause mortality among American adults aged 40 and older (NHANES 2001-2018). Frontiers in Nutrition 11: 1430605. DOI: 10.3389/fnut.2024.1430605
  81. Trott, O. and Olson, A. J. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31(2): 455–461. DOI: 10.1002/jcc.21334
  82. Tufail, T., Bader Ul Ain, H., Noreen, S., Ikram, A., Arshad, M. T. and Abdullahi, M. A. 2024. Nutritional Benefits of Lycopene and Beta-Carotene: A Comprehensive Overview. Food Science & Nutrition 12(11): 8715–8741. DOI: 10.1002/fsn3.4502
  83. Valdes, A. M., Louca, P., Visconti, A., Asnicar, F., Bermingham, K., Nogal, A., Wong, K., Michelotti, G. A., Wolf, J., Segata, N., Spector, T. D., Berry, S. E., Falchi, M. and Menni, C. 2024. Vitamin A carotenoids, but not retinoids, mediate the impact of a healthy diet on gut microbial diversity. BMC Medicine 22(1): 321. DOI: 10.1186/s12916-024-03543-4
  84. Vanderstappen, J., Hoekx, S., Bislenghi, G., D'Hoore, A., Verstockt, B. and Sabino, J. 2024. Preoperative optimization: Review on nutritional assessment and strategies in IBD. Current Opinion in Pharmacology 77: 102475. DOI: 10.1016/j.coph.2024.102475
  85. Wang, Y., Chen, Y., Zhang, X., Lu, Y. and Chen, H. 2020. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. Journal of Functional Foods 75: 104248. DOI: 10.1016/j.jff.2020.104248
  86. Wang, D., Wu, J., Zhu, P., Xie, H., Lu, L., Bai, W., Pan, W., Shi, R., Ye, J., Xia, B., Zhao, Z., Wang, Y., Liu, X. and Zhao, B. 2022. Tryptophan-rich diet ameliorates chronic unpredictable mild stress induced depression- and anxiety-like behavior in mice: The potential involvement of gut-brain axis. Food Research International 157: 111289. DOI: 10.1016/j.foodres.2022.111289
  87. Weinberg, S. E., Sun, L., Yang, A. L., Liao, J. and Yang, G. Y. 2020. Overview of Inositol and Inositol Phosphates on Chemoprevention of Colitis-Induced Carcinogenesis. Molecules 26(1): 31. DOI: 10.3390/molecules26010031
  88. Wendland, B. E., Aghdassi, E., Tam, C., Carrrier, J., Steinhart, A. H., Wolman, S. L., Baron, D., and Allard, J. P. 2001. Lipid peroxidation and plasma antioxidant micronutrients in Crohn disease. The American Journal of Clinical Nutrition 74(2): 259-264
  89. Wirthgen, E. and Hoeflich, A. 2015. Endotoxin-Induced Tryptophan Degradation along the Kynurenine Pathway: The Role of Indolamine 2,3-Dioxygenase and Aryl Hydrocarbon Receptor-Mediated Immunosuppressive Effects in Endotoxin Tolerance and Cancer and Its Implications for Immunoparalysis. Journal of Amino Acids 2015: 1–13. DOI: 10.1155/2015/973548
  90. Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z. and Woolsey, J. 2006. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research 34(Database issue): D668–D672. DOI: 10.1093/nar/gkj067
  91. Wu, T., Li, J., Wang, W., Xu, C., Wang, L. and Ding, L. 2022. Egg white hydrolysate from simulated gastrointestinal digestion alleviates the inflammation and improves the nutritional status in TNBS-induced Crohn’s disease rats. Journal of Functional Foods 98: 105288. DOI: 10.1016/j.jff.2022.105288

Last update:

No citation recorded.

Last update:

No citation recorded.