JAFT • pISSN 2355-9152 • eISSN 2614-7076 • Member of CrossRef®
skip to main content

Characterization of Layer-by-Layer Biodegradable Films Based on Hydroxypropyl Methylcellulose-Nanochitosan

Aulal Muna  -  Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
Rumpoko Wicaksono  -  Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
*Condro Wibowo  -  Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
Open Access Copyright 2023 Journal of Applied Food Technology

Citation Format:
Abstract

This research investigates the physical and optical properties of single-layer and layer-by-layer biodegradable films composed of hydroxypropyl methylcellulose (HPMC) and nanochitosan. Initially, HPMC and nanochitosan were formulated as single layers at various concentrations, and subsequently, the selected formulas were utilized to produce a layer-by-layer film. The results indicate that the concentrations of 0.4% w/v HPMC and 0.5% w/v of nanochitosan were successfully assembled into a layer-by-layer biodegradable film. Assessment based on multiple parameters (thickness, moisture content, water vapor transmission rate, color, transparency, and biodegradability) reveals that the deposition of nanochitosan onto HPMC in a layer-by-layer configuration enhances most characteristics of single-layer HPMC films, with the exception of optical properties. Moreover, all samples were degraded within a seven-day observation period.

Fulltext View|Download
Keywords: biodegradable films; hydroxypropyl methylcellulose; layer-by-layer; nanochitosan

Article Metrics:

  1. Ahammed, S., Liu, F., Easdani, M., Saqib, M.N., Zhong, F. 2023. Self-assembly of zein in aqueous acetic acid and ethanol solvents: Effect on mechanical properties of the zein film. Food Packaging and Shelf Life 38 101120. Elsevier. DOI: 10.1016/J.FPSL.2023.101120
  2. Apriliyani, M.W., Andriani, R.D., Rahayu, P.P., Purwadi, P., Manab, A. 2020. Mechanical, Chemical, and Microstructure Properties of Composite Edible Film Added with Modified Casein. Jurnal Ilmu dan Teknologi Hasil Ternak 15(3): 162–171. Brawijaya University. DOI: 10.21776/ub.jitek.2020.015.03.4
  3. Arnon-Rips, H., Poverenov, E. 2018. Improving food products’ quality and storability by using Layer by Layer edible coatings. Trends in Food Science & Technology 75 81–92. Elsevier. DOI: 10.1016/J.TIFS.2018.03.003
  4. Association of Official Agricultural Chemist (AOAC). 2000. Official Method of Analysis of Association of Analytical Chemist. AOAC Publisher: Maryland
  5. ASTM standard D1005-95, 2020, “Standard Test Method for Measurement of Dry-Film Thickness of Organic Coatings Using Micrometers,” ASTM International, 2020, DOI: doi.org/10.1520/D1005-95R20
  6. ASTM standard D1746-15, 2023, “Standard Test Method for Transparency of Plastic Sheeting,” ASTM International, 2023, DOI: doi.org/10.1520/D1746-15
  7. ASTM standard D552-17, 2022, “Standard Test Method for Measuring Solution Viscosity of Polymers with a Differential Viscometer,” ASTM International, 2022, DOI: doi.org/10.1520/D5225-17
  8. ASTM standard E1347-06, 2020, “Standard Test Method for Color and Color-Difference Measurement by Tristimulus Colorimetry,” ASTM International, 2020, DOI: doi.org/10.1520/E1347-06R20
  9. ASTM standard E96-00, 2017, “Standard Test Methods for Water Vapor Transmission of Materials,” ASTM International, 2017, DOI: doi.org/10.1520/E0096-00
  10. Beghetto, V., Gatto, V., Conca, S., Bardella, N., Buranello, C., Gasparetto, G., Sole, R. 2020. Development of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride cross-linked carboxymethyl cellulose films. Carbohydrate Polymers 249. Elsevier Ltd. DOI: 10.1016/j.carbpol.2020.116810
  11. Bigi, F., Haghighi, H., Siesler, H.W., Licciardello, F., Pulvirenti, A. 2021. Characterization of chitosan-hydroxypropyl methylcellulose blend films enriched with nettle or sage leaf extract for active food packaging applications. Food Hydrocolloids 120 106979. Elsevier. DOI: 10.1016/J.FOODHYD.2021.106979
  12. Bradford, K.J., Dahal, P., Asbrouck, J. Van, Kunusoth, K., Bello, P., Thompson, J., Wu, F. 2020. The dry chain: reducing postharvest losses and improving food safety in humid climates. Food Industry Wastes: Assessment and Recuperation of Commodities 375–389. Academic Press. DOI: 10.1016/B978-0-12-817121-9.00017-6
  13. Chen, J., Zhang, J., Liu, D., Zhang, C., Yi, H., Liu, D. 2022. Preparation, characterization, and application of edible antibacterial three-layer films based on gelatin–chitosan–corn starch–incorporated nisin. Food Packaging and Shelf Life 34. Elsevier Ltd. DOI: 10.1016/j.fpsl.2022.100980
  14. Chen, K., Tian, R., Xu, G., Wu, K., Liu, Y., Jiang, F. 2023. Characterizations of konjac glucomannan/curdlan edible coatings and the preservation effect on cherry tomatoes. International Journal of Biological Macromolecules 232. Elsevier B.V. DOI: 10.1016/j.ijbiomac.2023.123359
  15. Chen, W., Ma, S., Wang, Q., McClements, D.J., Liu, X., Ngai, T., Liu, F. 2022. Fortification of edible films with bioactive agents: a review of their formation, properties, and application in food preservation. Critical Reviews in Food Science and Nutrition 62(18): 5029–5055. Taylor & Francis. DOI: 10.1080/10408398.2021.1881435
  16. Chiaregato, C.G., Bernardinelli, O.D., Shavandi, A., Sabadini, E., Petri, D.F.S. 2023. The effect of the molecular structure of hydroxypropyl methylcellulose on the states of water, wettability, and swelling properties of cryogels prepared with and without CaO2. Carbohydrate Polymers 316 121029. Elsevier. DOI: 10.1016/J.CARBPOL.2023.121029
  17. Dea, F.I., Purbowati, I.S.M., Wibowo, C. 2022. Karakteristik Edible Film yang Dihasilkan dengan Bahan Dasar Pektin Kulit Buah Kopi Robusta dan Glukomanan. Agrointek : Jurnal Teknologi Industri Pertanian 16(3): 439–449. DOI: 10.21107/AGROINTEK.V16I3.11480.G7031
  18. Ghadermazi, R., Hamdipour, S., Sadeghi, K., Ghadermazi, R., Khosrowshahi Asl, A. 2019. Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose—A review. Food Science & Nutrition 7(11): 3363–3377. John Wiley & Sons, Ltd. DOI: 10.1002/FSN3.1206
  19. Giacinti Baschetti, M., Minelli, M. 2020. Test methods for the characterization of gas and vapor permeability in polymers for food packaging application: A review. Polymer Testing 89 106606. Elsevier. DOI: 10.1016/J.POLYMERTESTING.2020.106606
  20. Hira, N., Mitalo, O.W., Okada, R., Sangawa, M., Masuda, K., Fujita, N., Ushijima, K., et al. 2022. The effect of layer-by-layer edible coating on the shelf life and transcriptome of ‘Kosui’ Japanese pear fruit. Postharvest Biology and Technology 185. Elsevier B.V. DOI: 10.1016/j.postharvbio.2021.111787
  21. Jurić, S., Bureš, M.S., Vlahoviček-Kahlina, K., Stracenski, K.S., Fruk, G., Jalšenjak, N., Bandić, L.M. 2023. Chitosan-based layer-by-layer edible coatings application for the preservation of mandarin fruit bioactive compounds and organic acids. Food Chemistry: X 17. Elsevier Ltd. DOI: 10.1016/j.fochx.2023.100575
  22. Karki, R., Oey, I., Bremer, P., Silcock, P. 2023. Understanding the effect of meat electrical conductivity on Pulsed Electric Field (PEF) process parameters and the ability of PEF to enhance the quality and shorten sous vide processing for beef short ribs. Food Research International 163 112251. Elsevier. DOI: 10.1016/J.FOODRES.2022.112251
  23. Khater, E.S., Bahnasawy, A., Gabal, B.A., Abbas, W., Morsy, O. 2023. Effect of adding nano-materials on the properties of hydroxypropyl methylcellulose (HPMC) edible films. Scientific Reports 2023 13:1 13(1): 1–14. Nature Publishing Group. DOI: 10.1038/s41598-023-32218-y
  24. Khodaman, E., Barzegar, H., Jokar, A., Jooyandeh, H. 2022. Production and evaluation of Physicochemical, Mechanical, and Antimicrobial Properties of Chia (Salvia hispanica L.) mucilage-gelatin based Edible Films Incorporated with Chitosan Nanoparticles. Journal of Food Measurement and Characterization 16(5): 3547–3556. Springer. DOI: 10.1007/S11694-022-01470-7/METRICS
  25. Kuyu, C.G., Tola, Y.B., Abdi, G.G. 2019. Study on post-harvest quantitative and qualitative losses of potato tubers from two different road access districts of Jimma zone, South West Ethiopia. Heliyon 5(8): e02272. Elsevier Ltd. DOI: 10.1016/j.heliyon.2019.e02272
  26. Lara, G., Yakoubi, S., Villacorta, C.M., Uemura, K., Kobayashi, I., Takahashi, C., Nakajima, M., et al. 2020. Spray technology applications of xanthan gum-based edible coatings for fresh-cut lotus root (Nelumbo nucifera). Food Research International 137. Elsevier Ltd. DOI: 10.1016/j.foodres.2020.109723
  27. Lim, L.I., Tan, H.L., Pui, L.P. 2021. Development and characterization of alginate-based edible film incorporated with hawthorn berry (Crataegus pinnatifida) extract. Journal of Food Measurement and Characterization 15(3): 2540–2548. Springer. DOI: 10.1007/S11694-021-00847-4/METRICS
  28. Maringgal, B., Hashim, N., Mohamed Amin Tawakkal, I.S., Muda Mohamed, M.T. 2020. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends in Food Science & Technology 96 253–267. Elsevier. DOI: 10.1016/J.TIFS.2019.12.024
  29. Mileti, O., Baldino, N., Filice, F., Lupi, F.R., Sinicropi, M.S., Gabriele, D. 2023. Formulation Study on Edible Film from Waste Grape and Red Cabbage. Foods 2023, Vol. 12, Page 2804 12(14): 2804. Multidisciplinary Digital Publishing Institute. DOI: 10.3390/FOODS12142804
  30. Ngo, T.M.P., Nguyen, T.H., Dang, T.M.Q., Tran, T.X., Rachtanapun, P. 2020. Characteristics and Antimicrobial Properties of Active Edible Films Based on Pectin and Nanochitosan. International Journal of Molecular Sciences 2020, Vol. 21, Page 2224 21(6): 2224. Multidisciplinary Digital Publishing Institute. DOI: 10.3390/IJMS21062224
  31. Perera, K.Y., Sharma, S., Duffy, B., Pathania, S., Jaiswal, A.K., Jaiswal, S. 2022. An active biodegradable layer-by-layer film based on chitosan-alginate-TiO2 for the enhanced shelf life of tomatoes. Food Packaging and Shelf Life 34 100971. Elsevier. DOI: 10.1016/J.FPSL.2022.100971
  32. Pham, T.T., Le, L., Nguyen, P., Dam, M.S., Baranyai, L. 2023. Application of Edible Coating in Extension of Fruit Shelf Life: Review. AgriEngineering 2023, Vol. 5, Pages 520-536 5(1): 520–536. Multidisciplinary Digital Publishing Institute. DOI: 10.3390/AGRIENGINEERING5010034
  33. Pratama, Y., Abduh, S.B.M., Legowo, A.M., Hintono, A. 2019. Effect of chitosan-palm olein emulsion incorporation on tapioca starch-based edible film properties. International Food Research Journal 26(1): 203–208
  34. Puscaselu, R., Gutt, G., Amariei, S. 2020. The Use of Edible Films Based on Sodium Alginate in Meat Product Packaging: An Eco-Friendly Alternative to Conventional Plastic Materials. Coatings 2020, Vol. 10, Page 166 10(2): 166. Multidisciplinary Digital Publishing Institute. DOI: 10.3390/COATINGS10020166
  35. Qiao, C., Ma, X., Wang, X., Liu, L. 2021. Structure and properties of chitosan films: Effect of the type of solvent acid. LWT 135 109984. Academic Press. DOI: 10.1016/J.LWT.2020.109984
  36. Rizqiati, H., Nurwantoro, N., Susanti, S., Prayoga, M.I.Y. 2021. The effects of dextrin concentration as filler on physical, chemical, and microbiology properties of powdered goat milk kefir. Journal of the Indonesian Tropical Animal Agriculture 46(2): 145–153. Diponegoro University. DOI: 10.14710/JITAA.46.2.145-153
  37. Roshandel-hesari, N., Mokaber-Esfahani, M., Taleghani, A., Akbari, R. 2022. Investigation of physicochemical properties, antimicrobial and antioxidant activity of edible films based on chitosan/casein containing Origanum vulgare L. essential oil and its effect on quality maintenance of cherry tomato. Food Chemistry 396 133650. Elsevier. DOI: 10.1016/J.FOODCHEM.2022.133650
  38. Sam, I.S., Hasri, Putri, S.E. 2022. Sintesis nanokitosan dari limbah kulit udang windu (Panaeus monodon). Jurnal Sainsmat 59–67. DOI: https://doi.org/10.35580/sainsmat111327492022
  39. Sancakli, A., Basaran, B., Arican, F., Polat, O. 2021. Effects of bovine gelatin viscosity on gelatin-based edible film mechanical, physical and morphological properties. SN Applied Sciences 3(1): 1–11. Springer Nature. DOI: 10.1007/S42452-020-04076-0/FIGURES/8
  40. Silva-Vera, W., Zamorano-Riquelme, M., Rocco-Orellana, C., Vega-Viveros, R., Gimenez-Castillo, B., Silva-Weiss, A., Osorio-Lira, F. 2018. Study of spray system applications of edible coating suspensions based on hydrocolloids containing cellulose nanofibers on grape surface (Vitis vinifera L.). Food and Bioprocess Technology 11(8): 1575–1585. Springer New York LLC. DOI: 10.1007/S11947-018-2126-1/METRICS
  41. Sultan, M., Hafez, O.M., Saleh, M.A., Youssef, A.M. 2021. Smart edible coating films based on chitosan and beeswax–pollen grains for the postharvest preservation of Le Conte pear. RSC Advances 11(16): 9572–9585. Royal Society of Chemistry. DOI: 10.1039/D0RA10671B
  42. Takeshita, S., Zhao, S., Malfait, W.J., Koebel, M.M. 2021. Chemistry of Chitosan Aerogels: Three-Dimensional Pore Control for Tailored Applications. Angewandte Chemie International Edition 60(18): 9828–9851. John Wiley & Sons, Ltd. DOI: 10.1002/ANIE.202003053
  43. Wahyu, A.J., Sitompul, S., Zubaidah, E. 2017. PENGARUH JENIS DAN KONSENTRASI PLASTICIZER TERHADAP SIFAT FISIK EDIBLE FILM KOLANG KALING (Arenga pinnata). Jurnal Pangan dan Agroindustri 5(1): 13–25. Retrieved from https://jpa.ub.ac.id/index.php/jpa/article/view/494
  44. Wang, Q., Chen, W., Zhu, W., McClements, D.J., Liu, X., Liu, F. 2022. A review of multilayer and composite films and coatings for active biodegradable packaging. npj Science of Food 2022 6:1 6(1): 1–16. Nature Publishing Group. DOI: 10.1038/s41538-022-00132-8
  45. Wang, Y., Yu, L., Sun, Q., Xie, F. 2021. Hydroxypropyl methylcellulose and hydroxypropyl starch: Rheological and gelation effects on the phase structure of their mixed hydrocolloid system. Food Hydrocolloids 115 106598. Elsevier. DOI: 10.1016/J.FOODHYD.2021.106598
  46. Warkoyo, W., Haris, M.A., Wahyudi, V.A. 2022. The Physical, Mechanical, Barrier Characteristics, and Application of Edible Film from Yellow Sweet Potato and Aloe Vera Gel. agriTECH 42(4): 390. Universitas Gadjah Mada. DOI: 10.22146/agritech.68633
  47. Yaashikaa, P.R., Kamalesh, R., Senthil Kumar, P., Saravanan, A., Vijayasri, K., Rangasamy, G. 2023. Recent advances in edible coatings and their application in food packaging. Food Research International 173 113366. Elsevier. DOI: 10.1016/J.FOODRES.2023.113366
  48. Yadav, A., Kumar, N., Upadhyay, A., Sethi, S., Singh, A. 2022. Edible coating as postharvest management strategy for shelf-life extension of fresh tomato (Solanum lycopersicum L.): An overview. Journal of Food Science 87(6): 2256–2290. John Wiley & Sons, Ltd. DOI: 10.1111/1750-3841.16145
  49. Yan, J., Luo, Z., Ban, Z., Lu, H., Li, D., Yang, D., Aghdam, M.S., et al. 2019. The effect of the layer-by-layer (LBL) edible coating on strawberry quality and metabolites during storage. Postharvest Biology and Technology 147 29–38. Elsevier B.V. DOI: 10.1016/j.postharvbio.2018.09.002
  50. Yang, N., Chen, H., Jin, Z., Hou, J., Zhang, Y., Han, H., Shen, Y., et al. 2020. Moisture sorption and desorption properties of gelatin, HPMC and pullulan hard capsules. International Journal of Biological Macromolecules 159 659–666. Elsevier. DOI: 10.1016/J.IJBIOMAC.2020.05.110
  51. Yarnpakdee, S., Kaewprachu, P., Jaisan, C., Senphan, T., Nagarajan, M., Wangtueai, S. 2022. Extraction and Physico–Chemical Characterization of Chitosan from Mantis Shrimp (Oratosquilla nepa) Shell and the Development of Bio-Composite Film with Agarose. Polymers 14(19):. MDPI. DOI: 10.3390/polym14193983
  52. Yu, X., Liu, Q., Jin, Z., Jiao, A. 2023. Preparation and characterization of hydroxypropyl methylcellulose/hydroxypropyl starch composite films reinforced by chitosan nanoparticles of different sizes. Materials Today Communications 35. Elsevier Ltd. DOI: 10.1016/j.mtcomm.2023.105714
  53. Zarzecka, U., Zadernowska, A., Chajęcka-Wierzchowska, W., Adamski, P. 2023. High-pressure processing effect on conjugal antibiotic resistance genes transfer in vitro and in the food matrix among strains from starter cultures. International Journal of Food Microbiology 388 110104. Elsevier. DOI: 10.1016/J.IJFOODMICRO.2023.110104
  54. Zhao, J., Wang, Y., Liu, C. 2022. Film Transparency and Opacity Measurements. Food Analytical Methods 15(10): 2840–2846. Springer. DOI: 10.1007/s12161-022-02343-x
  55. Zhao, Y., Yu, H., Li, H., Qiu, Y., Xia, S., Zhang, J., Zhu, J. 2023. Effect of E-beam irradiation on the qualitative attributes of shrimp (Penaeus vannamei). Food Bioscience 52 102350. Elsevier. DOI: 10.1016/J.FBIO.2023.102350
  56. Zhou, N., Wang, L., You, P., Wang, L., Mu, R.J., Pang, J. 2021. Preparation of pH-sensitive food packaging film based on konjac glucomannan and hydroxypropyl methyl cellulose incorporated with mulberry extract. International Journal of Biological Macromolecules 172 515–523. Elsevier. DOI: 10.1016/J.IJBIOMAC.2021.01.047
  57. Zorya, S., Morgan, N., Diaz Rios, L., Hodges, R., Bennett, B., Stathers, T., Mwebaze, P., et al. 2011. Missing food: the case of postharvest grain losses in sub-Saharan Africa. The International Bank for Reconstruction and Development / The World Bank. Retrieved from http://siteresources.worldbank.org/INTARD/Resources/MissingFoods10_web_final1.pdf

Last update:

No citation recorded.

Last update:

No citation recorded.