JAFT • pISSN 2355-9152 • eISSN 2614-7076 • Member of CrossRef®
skip to main content

The Effect of Fermentation Time on the Physicochemical and Microbiological Qualities of Buffalo Colostrum Kefir

*Heni Rizqiati orcid scopus  -  Department of Food Technology, Faculty of Animal and Agricultural Sciences, Diponegoro University, Prof. Jacub Rais Street, Tembalang, Semarang 50275, Indonesia
Nurwantoro Nurwantoro orcid scopus  -  Department of Food Technology, Faculty of Animal and Agricultural Sciences, Diponegoro University, Prof. Jacub Rais Street, Tembalang, Semarang 50275, Indonesia
Edi Prayitno orcid scopus  -  Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University, Prof. Jacub Rais Street, Tembalang, Semarang 50275, Indonesia
Izza Wildani Muttaqin  -  Department of Food Technology, Faculty of Animal and Agricultural Sciences, Diponegoro University, Prof. Jacub Rais Street, Tembalang, Semarang 50275, Indonesia
Ridho Pangestu  -  Department of Food Technology, Faculty of Animal and Agricultural Sciences, Diponegoro University, Prof. Jacub Rais Street, Tembalang, Semarang 50275, Indonesia
Open Access Copyright 2023 Journal of Applied Food Technology

Citation Format:
Abstract

This research aims to determine the best fermentation time to produce optimal buffalo colostrum kefir. Different fermentation times at 12, 24, 36, and 48 hours were used to measure the physicochemical and microbiological characteristics of buffalo colostrum kefir. To produce buffalo colostrum kefir, fermentation process at room temperature (27˚C±1) was used. Viscosity was measured using Ostwald viscometer and Total Dissolved Solid (TDS) was measured digital refractometer. Titratable acidity was analyzed using titration method and pH value was measured using pH meter. Protein content was analyzed using Kjeldahl method and fat content was analyzed using Soxhlet method. The result shows no significant differences (P>0.05) in viscosity which results in a value of 0.92±0.09 to 0.80±0.04 cP. Meanwhile, it shows significant differences (P<0.05) on TDS (24.02±0.80 to 13.30±0.76 ºBrix), titrable acid (1.96±0.10 to 2.53±0.04%), pH value (3.95±0.03 to 3.37±0.04), protein content (14.41±0.94 to 10.57±0.68%), fat content (20.33±0.88 to 6.89±0.90%), total LAB (2.85x106 to 9.57x106 CFU/ml), total yeast (2.16x105 to 7.76x105 CFU/ml), and total microbes (5.15x106 to 5.21x106 CFU/ml). The best treatment was 36 hours of fermentation with 20% grain concentration (w/v) because it produced the highest total Lactic Acid Bacteria (LAB), total yeast, and total microbes so it is potential to be a probiotic drink. 

Fulltext View|Download
Keywords: buffalo; colostrum; fermentation time; kefir

Article Metrics:

  1. Adams, M. R., Moss, M. O. 2008. Food Microbiology (3rd ed.). Cambridge: The Royal Society of Chemistry
  2. Alimentarius, C. 2003. Codex standard for fermented milks. Retrieved from https://www.fao.org/3/i2085e/i2085e00
  3. AOAC. 1990. Official Methods of Analysis (15th ed.). Washington DC: Association of Official Analytical Chemist
  4. AOAC. 2005. Official Methods of Analysis of AOAC International (18th ed.). Gaithersburg: AOAC International
  5. Arslan, S. 2015. A review: chemical, microbiological and nutritional characteristics of kefir. CyTA-Journal of Food 13(3): 340-345. DOI: https://doi.org/10.1080/19476337.2014.981588
  6. Ayar, A., Sıçramaz, H., Çetin, İ. 2016. The effect of bovine colostrum on the lactic flora of yogurt and kefir. JSM Biotechnology and Bioengineering 3: 1062-1067
  7. Bengoa, A. A., Iraporda, C., Acurcio, L. B., de Cicco Sandes, S. H., Costa, K., Guimarães, G. M., Nicoli, J. R. 2019. Physicochemical, immunomodulatory and safety aspects of milks fermented with Lactobacillus paracasei isolated from kefir. Food Research International 123: 48-55. DOI: https://doi.org/10.1016/j.foodres.2019.04.041
  8. Brown, L., Pingitore, E. V., Mozzi, F., Saavedra, L., M Villegas, J., M Hebert, E. 2017. Lactic acid bacteria as cell factories for the generation of bioactive peptides. Protein and Peptide Letters 24(2): 146-155. DOI: http://dx.doi.org/10.2174/0929866524666161123111333
  9. Casarotti, S. N., Monteiro, D. A., Moretti, M. M., Penna, A. L. B. 2014. Influence of the combination of probiotic cultures during fermentation and storage of fermented milk. Food Research International 59(9): 67-75. DOI: https://doi.org/10.1016/j.foodres.2014.01.068
  10. Chandra, P., Singh, R., Arora, P. K. 2020. Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories 19(1): 1-42. DOI: https://doi.org/10.1186/s12934-020-01428-8
  11. Chen, C., Zhao, S., Hao, G., Yu, H., Tian, H., Zhao, G. 2017. Role of lactic acid bacteria on the yogurt flavour: A review. International Journal of Food Properties, 20(1): 316-330. DOI: https://doi.org/10.1080/10942912.2017.1295988
  12. Coroian, A., Erler, S., Matea, C. T., Mireșan, V., Răducu, C., Bele, C., Coroian, C. O. 2013. Seasonal changes of buffalo colostrum: physicochemical parameters, fatty acids andcholesterol variation. Chemistry Central Journal 7(1): 1-9. DOI: https://doi.org/10.1186/1752-153X-7-40
  13. Cotârleț, M., Vasile, A. M., Cantaragiu, A. M., Gaspar-Pintiliescu, A., Crăciunescu, O., Oancea, A., Bahrim, G. E. 2019. Colostrum-derived bioactive peptides obtained by fermentation with kefir grains enriched with selected yeasts. The Annals of the University Dunarea de Jos of Galati. Fascicle VI-Food Technology 43(1): 54-68. DOI: https://doi.org/10.35219/foodtechnology.2019.1.04
  14. El-Fattah, A., Alaa, M., Abd Rabo, F. H., EL-Dieb, S. M., El-Kashef, H. A. 2012. Changes in composition of colostrum of Egyptian buffaloes and Holstein cows. BMC Veterinary Research 8(1): 1-7. DOI: https://doi.org/10.1186/1746-6148-8-19
  15. Erzhad, M. F., Adiyoga, R., Marwah, H., Wulandari, Z., Soenarno, M. S., Arifin, M., Murtini, D. 2022. The Utilization of Red Fruit (Pandanus Conoideus Lam) Extract for Making Goat’s Milk Kefir. Paper presented at the IOP Conference Series: Earth and Environmental Science
  16. Garauet, V., Manis, C., Scano, P., Caboni, P. 2021. Compositional characteristics of mediterranean buffalo milk and whey. Dairy 2(3): 469-488. DOI: https://doi.org/10.3390/dairy2030038
  17. Khedid, K., Faid, M., Mokhtari, A., Soulaymani, A., Zinedine, A. 2009. Characterization of lactic acid bacteria isolated from the one humped camel milk produced in Morocco
  18. Microbiological research 164(1): 81-91. DOI: https://doi.org/10.1016/j.micres.2006.10.008
  19. Laureys, D., Aerts, M., Vandamme, P., De Vuyst, L. 2018. Oxygen and diverse nutrients influence the water kefir fermentation process. Food microbiology 73: 351-361. DOI: https://doi.org/10.1016/j.fm.2018.02.007
  20. Leite, A., Leite, D., Del Aguila, E., Alvares, T., Peixoto, R., Miguel, M., Paschoalin, V. 2013. Microbiological and chemical characteristics of Brazilian kefir during fermentation and storage processes. Journal of dairy science 96(7): 4149-4159. DOI: https://doi.org/10.3168/jds.2012-6263
  21. Mendes Ferreira, A., Mendes-Faia, A. 2020. The role of yeasts and lactic acid bacteria on the metabolism of organic acids during winemaking. Foods 9(9): 1231. DOI: https://doi.org/10.3390/foods9091231
  22. Montanuci, F. D., Pimentel, T. C., Garcia, S., Prudencio, S. H. 2012. Effect of starter culture and inulin addition on microbial viability, texture, and chemical characteristics of whole or skim milk Kefir. Food Science and Technology 32: 580-865. DOI: https://doi.org/10.1590/S0101-20612012005000119
  23. Morrill, K., Robertson, K., Spring, M., Robinson, A., Tyler, H. 2015. Validating a refractometer to evaluate immunoglobulin G concentration in Jersey colostrum and the effect of multiple freeze–thaw cycles on evaluating colostrum quality. Journal of dairy science 98(1): 595-601. DOI: https://doi.org/10.3168/jds.2014-8730
  24. Nejati, F., Junne, S., Neubauer, P. 2020. A big world in small grain: a review of natural milk kefir starters. Microorganisms 8(2): 192. DOI: https://doi.org/10.3390/microorganisms8020192
  25. Norberto, A. P., Marmentini, R. P., Carvalho, P. H., Campagnollo, F. B., Takeda, H. H., Alberte, T. M., Sant’Ana, A. S. 2018. Impact of partial and total replacement of milk by water-soluble soybean extract on fermentation and growth parameters of kefir microorganisms. LWT 93: 491-498. DOI: https://doi.org/10.1016/j.lwt.2018.03.070
  26. Putri, Y. D., Setiani, N. A., Warya, S. 2020. The effect of temperature, incubation and storage time on lactic acid content, pH and viscosity of goat milk kefir. Current Research on Bioscences and Biotechnology 2(1): 101-104. DOI: https://doi.org/10.5614/crbb.2020.2.1/HPMQ5042
  27. Ruck, J. 1963. Chemical methods for analysis of fruit and vegetable products. Chemical methods for analysis of fruit and vegetable products
  28. Salehet, A., Moussa, M. A., Hassabu, E., Ewis, A. 2020. The Use of Colostrum to Improve the Functional and Chemical Properties of Ice Cream. Journal of Productivity and Development 25(4): 363-375. DOI: https://dx.doi.org/10.21608/jpd.2020.140137
  29. Setyawardani, T., Sumarmono, J. 2015. Chemical and microbiological characteristics of goat milk kefir during storage under different temperatures. Journal of the Indonesian Tropical Animal Agriculture 40(3): 183-188. DOI: https://doi.org/10.14710/jitaa.40.3.183-188
  30. Setiawati, A. E., Sari, I. N., Hasyati, N. 2021. Effect of temperature and time storage towards alcohol level in cow milk kefir. Paper presented at the IOP Conference Series: Earth and Environmental Science
  31. Subramanya, S. H., N. K. Sharan, B. P. Baral, D. Hamal, N. Nayak, P. Y. Prakash, S. Gokhale. 2017 .Diversity, in-vitro virulence traits and antifungal susceptibility pattern of gastrointestinal yeast flora of healthy poultry, Gallus gallus domesticus. BMC microbiology 17(1): 1 – 14. DOI: https://doi.org/10.1186/s12866-017-1024-4
  32. Sulmiyati, S., Said, N., Fahrodi, D., Malaka, R., Maruddin, F. 2019. The physicochemical, microbiology, and sensory characteristics of kefir goat milk with different levels of kefir grain. Tropical Animal Science Journal 42(2): 152-158. DOI: https://doi.org/10.5398/tasj.2019.42.2.152
  33. Vieira, C., Álvares, T., Gomes, L., Torres, A., Paschoalin, V., Conte-Junior, C. 2015. Kefir grains change fatty acid profile of milk during fermentation and storage. PloS one 10(10): 139-149. DOI: https://doi.org/10.1371/journal.pone.0139910
  34. Windayani, N., Kurniati, T., Rukayadi, Y. 2020. Antibacterial activity of colostrum kefir against foodborne pathogen bacteria. Paper presented at the IOP Conference Series: Earth and Environmental Science
  35. Yap, M., Fernando, W. M., Brennan, C. S., Jayasena, V., Coorey, R. 2017. The effects of banana ripeness on quality indices for puree production. LWT 80: 10-18. DOI: https://doi.org/10.1016/j.lwt.2017.01.073
  36. Yıldız-Akgül, F., Yetişemiyen, A., Şenel, E., Yıldırım, Z. 2018. Microbiological, physicochemical, and sensory characteristics of kefir produced by secondary fermentation. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka 68(3): 201-213. DOI: https://doi.org/10.15567/mljekarstvo.2018.0305

Last update:

No citation recorded.

Last update:

No citation recorded.