Jurnal pangan nasional "terakreditasi" Kemeristekdikti dari Indonesian Food Technologists® - IFT
skip to main content

The Effect of Drinking a Cup of Arabica or Robusta Coffee with Sugar or Bread to Blood Sugar Response and Glycemic Index

*Umar Hafidz Asy'ari Hasbullah scopus  -  Universitas PGRI Semarang, Indonesia
Fafa Nurdyansyah  -  Universitas PGRI Semarang, Indonesia
Rini Umiyati  -  Universitas PGRI Semarang, Indonesia
Laela Nur Rokhmah  -  Politeknik Santo Paulus Surakarta, Indonesia

Citation Format:
Abstract
The two most widely traded coffee varieties in the world are arabica and robusta. Consumption of these two varieties will increase the intake of bioactive compounds in the human body. However, the influence of consumption of both coffee varieties on blood sugar response and changes in the glycemic index of sugar added when consuming coffee has not been studied. The aim of this research to study the effect of coffee varieties on bioactive compound content, voluntary blood glucose response, and changes in the glycemic index value of sugar when consumed together with coffee. This study was designed with the treatment of arabica and robusta coffee varieties. Coffee roasting was carried out at the level of vienna roasting. Analysis of bioactive compounds was carried out on the content of phenol compounds. Analysis of blood sugar and glycemic index responses using volunteers. Coffee was brewed at a dose of 12 grams per 100 ml of water at 98ᵒC. Sugar added 50 grams. The results showed that arabica contained phenol compounds greater than robusta. It was also prove that consuming coffee can reduce blood glucose response compared to consuming glucose. Decreased blood glucose response of arabica is greater than robusta. Drinking coffee mixed with sugar or with eating bread can reduce the sugar or bread glycemic index value. Decrease in sugar or bread glycemic index value in arabica consumption was greater than robusta. Conclusion, coffee consumption can reduce the response of blood sugar and glycemic index of sugar added to drinks and bread glycemic index because of the content of its bioactive compounds.
Fulltext
Keywords: arabica; robusta; coffee; blood sugar level; glycemic index; phenol
Funding: Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM) of Universitas PGRI Semarang

Article Metrics:

  1. Affonso, R. C. L., Voytena, A. P. L., Fanan, S., Pitz, H., Coelho, D. S., Horstmann, A. L., Pereira, A., Uarrota, V. G., Hillmann, M. C., Varela, L. A. C., Ribeiro-do-Valle, R. M., & Maraschin, M. 2016. Phytochemical composition, antioxidant activity, and the effect of the aqueous extract of coffee (Coffea arabica L.) bean residual press cake on the skin wound healing. Oxidative Medicine and Cellular Longevity, 1923754, 1–10. https://doi.org/10.1155/2016/1923754
  2. Anuurad, E., Shiwaku, K., Nogi, A., Kitajima, K., Enkhmaa, B., Shimono, K., & Yamane, Y. 2003. The New BMI Criteria for Asians by the Regional Office for the Western Pacific Region of WHO are Suitable for Screening of Overweight to Prevent Metabolic Syndrome in Elder Japanese Workers. Journal of Occupational Health, 45(6), 335–343. https://doi.org/10.1539/joh.45.335
  3. Aryaeian, N., Sedehi, S. K., & Arablou, T. 2017. Polyphenols and their effects on diabetes management : A review. Med J Islam Repub Iran, 31(134), 1–14. https://doi.org/10.14196/mjiri.31.134
  4. Barros, F., Awika, J. M., & Rooney, L. W. 2012. Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. J. Agric. Food Chem. 2012, 60, 11609−1, 60, 11609–11617. https://doi.org/10.1021/jf3034539
  5. Cao, H., Ou, J., Chen, L., Zhang, Y., Szkudelski, T., Delmas, D., Daglia, M., & Xiao, J. 2019. Dietary polyphenols and type 2 diabetes: Human study and clinical trials. Critical Reviews in Food Science and Nutrition, 59(20), 3371–3379. https://doi.org/10.1080/10408398.2018.1492900
  6. Castro-acosta, M. L., Stone, S. G., Mok, J. E., Mhajan, R. K., Fu, C., Lenihan-geels, G. N., Corpe, C. P., & Hall, W. L. 2017. Apple and blackcurrant polyphenol-rich drinks decrease postprandial glucose, insulin and incretin response to a high-carbohydrate meal in healthy men and women. Journal of Nutritional Biochemistry, 49, 53–62. https://doi.org/10.1016/j.jnutbio.2017.07.013
  7. Coe, S., & Ryan, L. 2016. Impact of polyphenol-rich sources on acute postprandial glycaemia: a systematic review. Journal of Nutritional Science, 5(e24), 1–11. https://doi.org/10.1017/jns.2016.11
  8. Daniel, A., & Workneh, M. 2017. Determination of total phenolic content and antioxidant activities of five different brands of Ethiopian coffee. International Journal of Food and Nutrition Research, 1(2), 1–10. https://doi.org/10.28933/ijfnr-2017-03-1301
  9. Ding, M., Bhupathiraju, S. N., Chen, M., Dam, R. M. van, & Hu, F. B. 2014. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: A systematic review and a dose-response. Diabetes Care, 37, 569–586. https://doi.org/10.2337/dc13-1203
  10. Farah, A., & Donangelo, C. M. 2006. Phenolic compounds in coffee. Braz. J. Plant Physiol., 18(1), 23–36. https://doi.org/10.1590/S1677-04202006000100003
  11. Fărcaş, A. C., Socaci, S. A., Bocăniciu, I., Pop, A., Maria Tofană, S. M., & Feier, D. 2014. Evaluation of biofunctional compounds content from brewed coffee. Bulletin UASVM Food Science and Technology, 71(2), 114–118. https://doi.org/10.15835/buasvmcn-fst:10474
  12. Gajera, H. P., Gevariya, S. N., Hirpara, D. G., Patel, S. V., & Golakiya, B. A. 2017. Antidiabetic and antioxidant functionality associated with phenolic constituents from fruit parts of indigenous black jamun (Syzygium cumini L.) landraces. J Food Sci Technol, 54(10), 3180–3191. https://doi.org/10.1007/s13197-017-2756-8
  13. Gebeyehu, B. T., & Bikila, S. L. 2015. Determination of caffeine content and antioxidant activity of coffee. American Journal of Applied Chemistry, 3(2), 69–76. https://doi.org/10.11648/j.ajac.20150302.16
  14. Guasch-ferré, M., Merino, J., Sun, Q., Fitó, M., & Salas-salvadó, J. 2017. Dietary polyphenols, mediterranean diet, prediabetes, and type 2 diabetes: A narrative review of the evidence. Oxidative Medicine and Cellular Longevity, 6723931, 1–16. https://doi.org/10.1155/2017/6723931
  15. Hanhineva, K., Törrönen, R., Bondia-pons, I., Pekkinen, J., Kolehmainen, M., Mykkänen, H., & Poutanen, K. 2010. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 11, 1365–1402. https://doi.org/10.3390/ijms11041365
  16. Hecˇimovic´, I., Belšcˇak-Cvitanovic´, A., Horzˇic´, D., & Komes, D. 2011. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chemistry, 129, 991–1000. https://doi.org/10.1016/j.foodchem.2011.05.059
  17. Jakobek, L. 2015. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry, 175, 556–567. https://doi.org/10.1016/j.foodchem.2014.12.013
  18. Jiang, X., Zhang, D., & Jiang, W. 2014. Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. Eur J Nutr, 53, 25–38. https://doi.org/10.1007/s00394-013-0603-x
  19. Johnston, K. L., Clifford, M. N., & Morgan, L. M. 2003. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr, 78(4), 728–733. https://doi.org/10.1093/ajcn/78.4.728
  20. Kim, Y., Keogh, J. B., & Clifton, P. M. 2016. Polyphenols and glycemic control. Nutrients, 8(17), 1–27. https://doi.org/10.3390/nu8010017
  21. Lelyana, R., & Cahyono, B. 2015. Total phenolic acid contents in some commercial brands of coffee from Indonesia. J. Med. Plant Herb. Ther. Res., 3(4), 27–29. https://doi.org/10.33500/jmphtr.2015.03.004
  22. Mkandawire, N. L., Kaufman, R. C., Bean, S. R., Weller, C. L., Jackson, D. S., & Rose, D. J. 2013. Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on α‑amylase activity and in vitro digestibility of starch in raw and processed flours. J. Agric. Food Chem., 61, 4448−4454. https://doi.org/10.1021/jf400464j
  23. Natella, F., Nardini, M., Belelli, F., & Scaccini, C. 2007. Coffee drinking induces incorporation of phenolic acids into LDL and increases the resistance of LDL to ex vivo oxidation in humans. Am J Clin Nutr, 86(3), 604–609. https://doi.org/10.1093/ajcn/86.3.604
  24. Nuttall, F. Q. 2015. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutrition Research, 50(3), 117–128. https://doi.org/10.1097/NT.0000000000000092
  25. Ochiai, R., Sugiura, Y., Shioya, Y., Otsuka, K., Katsuragi, Y., & Hashiguchi, T. 2014. Coffee polyphenols improve peripheral endothelial function after glucose loading in healthy male adults. Nutrition Research, 34(2), 155–159. https://doi.org/10.1016/j.nutres.2013.11.001
  26. Pham, N. M., Nanri, A., Kochi, T., Kuwahara, K., Tsuruoka, H., Kurotani, K., Akter, S., Kabe, I., Sato, M., Hayabuchi, H., & Mizoue, T. 2014. Coffee and green tea consumption is associated with insulin resistance in Japanese adults. Metabolism, 63(3), 400–408. https://doi.org/10.1016/j.metabol.2013.11.008
  27. Rawel, H. M., & Kulling, S. E. 2007. Nutritional contribution of coffee, cacao and tea phenolics to human health. J. Verbr. Lebensm, 2, 399–406. https://doi.org/10.1007/s00003-007-0247-y
  28. Smith, B., Wingard, D. L., Smith, T. C., Kritz-Silverstein, D., & Barrett-Connor, E. 2006. Does coffee consumption reduce the risk of type 2 diabetes in individuals with impaired glucose? Diabetes Care, 29(11), 2385–2390. https://doi.org/10.2337/dc06-1084
  29. Tunnicliffe, J. M., & Shearer, J. 2008. Coffee, glucose homeostasis, and insulin resistance: physiological mechanisms and mediators. Appl. Physiol. Nutr. Metab., 33, 1290–1300. https://doi.org/10.1139/H08-123
  30. Van-Dijk, A. E., Olthof, M. R., Meeuse, J. C., Seebus, E., Heine, R. J., & Van-Dam, R. M. 2009. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care, 32, 1023–1025. https://doi.org/10.2337/dc09-0207.Clinical
  31. Van Dam, R. M., Dekker, J. M., Nijpels, G., Stehouwer, C. D. A., Bouter, L. M., & Heine, R. J. 2004. Coffee consumption and incidence of impaired fasting glucose, impaired glucose tolerance, and type 2 diabetes: the Hoorn Study. Diabetologia, 47, 2152–2159. https://doi.org/10.1007/s00125-004-1573-6
  32. Van Dam, Rob M., Willett, W. C., Manson, J. E., & Hu, F. B. 2006. Coffee, caffeine, and risk of type 2 diabetes. Diabetes Care, 29(2), 398–403. https://doi.org/10.2337/diacare.29.02.06.dc05-1512
  33. WHO. 2000. The Asia-Pacific perspective: Redefining obesity and its treatment. Health Communication Australia Pty Limited on behalf of the Steering Committee
  34. Williamson, G. 2013. Possible effects of dietary polyphenols on sugar absorption and digestion. Mol. Nutr. Food Res., 57, 48–57. https://doi.org/10.1002/mnfr.201200511
  35. Zhu, F. 2015. Interactions between starch and phenolic compound. Trends in Food Science & Technology, 43(2), 129–143. https://doi.org/10.1016/j.tifs.2015.02.003

Last update:

No citation recorded.

Last update:

No citation recorded.