Kualitas Tempe Menggunakan Rhizopus microsporus TB23, R. microsporus TB32, dan R. microsporus TB55 yang Berasal dari Inokulum "Daun Waru"

*Reza Arif Rahman  -  Program Studi Teknologi Pangan, Fakultas Teknobiologi, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia
Received: 14 Jul 2020; Revised: 7 Nov 2020; Accepted: 20 Feb 2021; Published: 1 Apr 2021; Available online: 28 Feb 2021.
Open Access License URL: http://creativecommons.org/licenses/by-nc/4.0

Citation Format:
Abstract

Rhizopus microsporus TB23, R. microsporus TB32, dan R. microsporus TB55 telah berhasil diisolasi dari inokulum "daun waru" terbukti dapat menghasilkan tempe dengan kualitas yang baik namun masih pada skala kecil di laboratorium. Oleh sebab itu, penelitian ini bertujuan untuk membandingkan kualitas tempe yang diproduksi dengan R. microsporus TB23, R. microsporus TB32, dan R. microsporus TB55 pada skala pengrajin tempe. Pembuatan tempe dilakukan di produsen tempe di Serpong-Tangerang. Pembuatan tempe dilakukan dengan menggunakan 300 g kedelai yang diinokulasi dengan R. microsporus TB23, R. microsporus TB32, R. microsporus TB55 dan inokulum komersial secara terpisah. Selanjutnya, uji organoleptik, pengukuran aktivitas antioksidan, analisis proksimat dilakukan terhadap setiap tempe yang berhasil diproduksi. Hasil penelitian ini menunjukkan bahwa cita rasa tempe menggunakan R. microsporus TB32 adalah yang paling disukai panelis. R. microsporus TB23, R. microsporus TB32, dan R. microsporus TB55 dapat menghasilkan tempe dengan kualitas yang sama dengan penelitian sebelumnya dan sesuai dengan syarat mutu tempe berdasarkan SNI 31144:2015 kecuali dalam hal warna. R. microsporus TB23, R. microsporus TB32, dan R. microsporus TB55 menghasilkan tempe berwarna kekuningan. Oleh sebab itu, informasi tentang warna kuning tersebut perlu dikaji lebih lanjut. Kesimpulannya, R. microsporus TB32 adalah inokulum yang paling baik untuk menghasilkan tempe dan dikembangkan sebagai inokulum tempe jika dibandingkan dengan R. microsporus TB23 dan R. microsporus TB55.

Quality of Tempeh using Rhizopus microsporus TB23, R. microsporus TB32, and R. microsporus TB55 Originating from the "Waru Leaf" Inoculum

Abstract

Rhizopus microsporus TB23, R. microsporus TB32, and R. microsporus TB55 have been successfully isolated from the "hibiscus leaf" resulting good quality of tempeh but still on laboratory scale. Therefore, this study aims to compare the quality of tempeh produced with R. microsporus TB23, R. microsporus TB32, and R. microsporus TB55 from the "waru leaf" inoculum in small scale production. Tempe was made in a small scale tempe producer in Serpong-Tangerang. Tempeh was made from 300 g of soybeans. Each tempeh was inoculated with R. microsporus TB23, R. microsporus TB32, R. microsporus TB55 and commercial inoculum, respectively. Organoleptic test, measurement of antioxidant activity, and proximate analysis were carried out for each tempeh to analyze its quality. The results of this study indicate that the taste of tempeh produced by R. microsporus TB32 was the most preferred by panelists. R. microsporus TB23, R. microsporus TB32, and R. microsporus TB55 produced tempe with similar quality as previous studies and in accordance with SNI 31144: 2015 except color performance. R. microsporus TB23, R. microsporus TB32, and R. microsporus TB55 produced yellowish-colored tempeh. In conclusion, R. microsporus TB32 was better tempeh inoculum than R. microsporus TB23 and R. microsporus TB55.

Keywords: Rhizopus; antioksidan; inokulum; organoleptik; kualitas; tempe; antioxidant; inoculum; organoleptic; quality; tempeh; Indonesia; taste, color performance; aroma; characteristic, penampilan; fisik
Funding: Universitas Katolik Indonesia Atma Jaya

Article Metrics:

  1. Aderibigbe, E., Osegboun, A.O. 2006. Acceptability of tempeh among health workers in Ado-Ekiti, Nigeria. Pakistan Journal of Nutrition 5:122-12. DOI: 10.3923/pjn.2006.122.124
  2. AOAC (Association of Official Analytical Chemists). 2012. Official Methods of Analysis, 19th Edition. Arlington
  3. Astawan, M., Wresdiyati, T., Maknun, L. 2017. Tempe sumber zat gizi dan komponen bioaktif untuk kesehatan. IPB Press, Bogor
  4. Astuti, M., Meliala, A., Dalais, F.S., Wahlqvist, M.L. 2000. Tempe, a nutritious and healthy food from Indonesia. Asia Pacific Journal of Clinical Nutrition 9(4):322-325. DOI: 10.1046/j.1440-6047.2000
  5. Barus, T., Salim D.P., Hartanti A. T. 2019a. Kualitas tempe menggunakan Rhizopus delemar TB26 dan R. delemar TB37 yang diisolasi dari inokulum tradisional tempe "daun waru". Jurnal Aplikasi Teknologi Pangan 8 (4):143-148. DOI: 10.17728/jatp.4449
  6. Barus, T., Maya, F., Hartanti, A.T. 2019b. Peran beberapa galur Rhizopus microsporus yang berasal dari “laru tradisional” dalam menentukan kualitas tempe. Jurnal Aplikasi Teknologi Pangan 8(1):17-22. DOI: 10.17728/jatp.3761
  7. Barus, T., Halim, R., Hartanti, A.T., Saputra, P.K. 2019c. Genetic diversity of Rhizopus microsporus from traditional inoculum of tempeh in Indonesia based on ITS sequences and RAPD marker. Biodiversitas Journal of Biological Diversity 20(3):847-852. DOI: 10.13057/biodiv/d200331
  8. Barus, T., Titarsole, N.N., Mulyono, N., Prasasty, V.D. 2019d. Tempeh antioxidant activity using DPPH method: Effects of fermentation, processing, and microorganisms. Journal of Food Engineering and Technology 8(2):75-80. DOI: 10.32732/jfet.2019.8.2.75
  9. Barus, T., Suwanto, A., Wahyudi, A.T., Wijaya, H. 2008. Role of bacteria in tempe bitter taste formation: microbiological and molecular biological analysis based on 16S rRNA gene. Microbiology Indonesia 2(1):17-21. DOI: 10.5454/mi.2.1.4
  10. Endrawati, D., Kusumaningtyas, E. 2017. Beberapa fungsi Rhizopus sp dalam meningkatkan nilai nutrisi bahan pakan. WARTAZOA 27(2):081-088. DOI: 10.14334/wartazoa.v27i2.1181
  11. Fiedor, J., Burda, K. 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6(2):466-488. DOI: 10.3390/nu6020466
  12. Handajani, Y.S., Turana, Y., Yogiara, Y., Widjaja, N.T., Sani, T.P., Christianto, G.A.M., Suwanto, A. 2020. Tempeh consumption and cognitive improvement in mild cognitive impairment. Dementia and geriatric cognitive disorders 49:497–502. DOI: 10.1159/000510563
  13. Handoyo, T., Morita, N. 2006. Structural and functional properties of fermented soybean (tempeh) by using Rhizopus oligosporus. International Journal of Food Properties 9(2):347-355. DOI: 10.1080/10942910500224746
  14. Haron, H., Shahar, S., O'Brien, K.O., Ismail, A., Kamaruddin, N., Rahman, S.A. 2010. Absorption of calcium from milk and tempeh consumed by postmenopausal Malay women using the dual stable isotope technique. International Journal of Food Sciences and Nutrition 61(2):125-137. DOI: 10.3109/09637480903348080
  15. Hartanti, A.T., Rahayu, G., Hidayat, I. 2015. Rhizopus species from fresh tempeh collected from several regions in Indonesia. Hayati Journal Bioscience 22(3):136-142. DOI: 10.1016/j.hjb.2015.10.004
  16. Hsu, R.L., Lee, K.T., Wang, J.H., Lee, Y.L., Chen, P.Y. 2009. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto. Journal of Agricutural Food Chemistry 57:503-8. DOI: 10.1021/jf803072r
  17. Jennessen, J., Schnürer, J., Olsson, J., Samson, R.A., Dijksterhuis, J. 2008. Morphological characteristics of sporangiospores of the tempe fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group. Mycological Research 112(1):547-563. DOI: 10.1016/j.mycres.2007.11.006
  18. Kadar, A.D., Astawan, M., Putri, S.P., Fukusaki, E., 2020. Metabolomics-Based study of the effect of raw materials to the end product of tempe-an Indonesian fermented soybean. Metabolites 10(9):1-11. DOI: 10.3390/metabo10090367
  19. Kiers, J.L., Nout, R.M.J., Rombouts, F.M. 2000. In vitro digestibility of processed and fermented soya bean, cowpea and maize. Journal of The Science of Food and Agriculture 80(9):1325-1331. DOI: 10.1002/1097-0010(200007)80:9
  20. Kim, M.R., Kawamura, Y., Lee, C.H. 2003. Isolation and identification of bitter peptides of tryptic hydrolysate of soybean 11S glycinin by reverse-phase high-performance liquid chromatography. Journal of Food Science 68: 2416-2422. DOI: 10.1111/j.1365-2621.2003.tb07039.x
  21. Kwon, G.H., Lee, H.A., Park, J.Y., Kim, J.S., Lim, J., Park, C.S., Kwon, D.Y., Kim, Y.S., Kim, J.H. 2009. Development of a PCR-RAPD method for identification of Bacillus species isolated from Cheonggukjang. International Journal of Food Microbiology 129: 282-7. DOI: 10.1016/j.ijfoodmicro.2008.12.013
  22. Lawless, H.T., Heymann, H. 2010. Sensory evaluation of food: principles and practices. 2nd Ed. Springer Science Business Media, New York
  23. Kustyawati, M.E., Subeki, Murhadi, Rizal, S., Astuti P. 2020. Vitamin B12 production in soybean fermentation for tempeh. AIMS Agriculture and Food 5(2): 262-271. DOI: 10.3934/agrfood.2020.2.262
  24. Myong, J.C., Unklesbay, N., Hsieh, F.H., Clarke, A.D. 2004. Hydrophobicity of bitter peptides from soy protein hydrolysates. Journal of Agricultural Food Chemistry 52:5895-5901. DOI: 10.1021/if0495035
  25. Ningsih, T.E., Siswanto, Rudju, W. 2018. Aktivitas antioksidan kedelai edamame hasil fermentasi kultur campuran oleh Rhizopus oligosporus dan Bacillus subtilis. Sainstek 7(1):17-21. DOI: 10.19184/bst.v6i1.7556
  26. Nout, M.J.R., Kiers, J.l. 2005. Tempe fermentation, innovation, and functionality: update into the third millenium. Applied and Environmental Microbiology 98:789-805. DOI: 10.1111/j.1365-2672.2004.02471.x
  27. Nout, M.J.R., Rombouts, F.M. 1990. Recent developments in tempe research. Journal of Applied Bacteriology 69:609-633. DOI: 10.1111/j.1365-2672.1990.tb01555.x
  28. Puspitasari, A., Astawan, M., Wresdiyati, T. 2020. Pengaruh Germinasi Kedelai terhadap Komposisi Proksimat dan Komponen Bioaktif Isoflavon Tempe Segar dan Semangit. Jurnal Pangan 29(1):35-44. DOI: 10.33964/jp.v29i1.460
  29. Roubos van den Hill, P.J., Nout, M.J.R., Beumer, R., Meulen, J., Zwietering. 2009. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells. Journal of Applied Microbiology 106:1013-1021. DOI: 10.1111/j.1365-2672.2008.04068.x
  30. Sarkar, F.H., Li, Y. 2002. Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Reviews 21(4):265-280. DOI: 10.1023/a:1021210910821
  31. Schipper, M.A.A., Gauger, W., Ende, V.D.H. 1985. Hybridization of Rhizopus species. Microbiology 131(9):2359-2365. DOI: 10.1099/00221287-131-9-2359
  32. SNI (Standar Nasional Indonesia) 3144-2015. 2015. Tempe Kedelai. Badan Standarisasi Nasional. Jakarta
  33. Stephanie, T.S., Kartawidjajaputra, F., Silo, W., Yogiara, Y., Suwanto, A. 2019. Tempeh consumption enhanced beneficial bacteria in the human gut. Food Research 3(1): 57-63. DOI: 10.26656/fr.2017.3(1).230
  34. Sudaryatiningsih, C., Supyani, S. 2009. Linoleic and linolenic acids analysis of soybean tofu with Rhizopus oryzae and Rhizopus oligosporus as coagulant. Nusantara Bioscience 1(3): 110-116. DOI: 10.13057/nusbiosci/n010302
  35. Terlabie, N.N., Sakyi-Dawson, E., Amoa-Awua, W.K. 2006. The comparative ability of four isolates of Bacillus subtilis to ferment soybeans into dawadawa. International Journal of Food Microbiology 106:145-152. DOI: 10.1016/j.ijfoodmicro.2005.05.021

Last update: 2021-04-19 10:16:38

No citation recorded.

Last update: 2021-04-19 10:16:39

No citation recorded.