Jurnal pangan nasional "terakreditasi" Kemeristekdikti dari Indonesian Food Technologists® - IFT
skip to main content

Optimasi Karakteristik Tepung Komposit Berbasis Tepung Onggok Fermentasi menggunakan Metode Response Surface Methodology (RSM)

*Beni Hidayat orcid scopus  -  Jurusan Teknologi Pertanian, Politeknik Negeri Lampung, Bandar Lampung, Indonesia
Udin Hasanuddin scopus  -  Jurusan Teknologi Hasil Pertanian, Fakultas Pertanian, Universitas Lampung, Bandar Lampung, Indonesia
Siti Nurdjanah scopus  -  Jurusan Teknologi Hasil Pertanian, Fakultas Pertanian, Universitas Lampung, Bandar Lampung, Indonesia
Neti Yuliana scopus  -  Jurusan Teknologi Hasil Pertanian, Fakultas Pertanian, Universitas Lampung, Bandar Lampung, Indonesia
Muhammad Muslihudin  -  Jurusan Teknologi Pertanian, Politeknik Negeri Lampung, Bandar Lampung, Indonesia
Syamsu Akmal  -  Jurusan Teknologi Pertanian, Politeknik Negeri Lampung, Bandar Lampung, Indonesia

Citation Format:
Abstract

Pengembangan tepung komposit di negara-negara tropis terutama diarahkan pada pengembangan produk tepung bebas-gluten berbahan baku lokal. Penelitian bertujuan untuk mendapatkan formulasi optimal tepung komposit berbahan baku tepung onggok fermentasi (TOF), tapioka dan gum xanthan (GX) untuk menghasilkan tepung komposit dengan karakteristik optimal sebagai tepung bebas-gluten. Optimasi karakteristik tepung komposit dilakukan menggunakan metode respon permukaan dengan model Central Composite Design. Hasil optimasi menggunakan metode numerik menunjukkan bahwa karakteristik optimal produk tepung komposit diperoleh pada formulasi 1) TOF: 82,46%, tapioka: 17,54%, GX: 0,10%, 2) TOF: 83,85%, tapioka: 16,15%, GX: 0,10%, dan 3) TOF: 84,13%, tapioka: 15,87%, GX: 0,10%. Formulasi-formulasi optimal selanjutnya dianalisis karakteristik pastingnya, mencakup  viskositas maksimum, viskositas awal pendinginan, viskositas akhir pendinginan, viskositas retrogradasi, dan viskositas balik. Pengujian karakteristik pasting pada formulasi optimal menunjukkan bahwa formulasi TOF: 82,46%, tapioka: 17,54%, GX: 0,10% karena memiliki karakteristik pasting terbaik dengan viskositas maksimum  215 BU, viskositas awal pendinginan 166 BU, viskositas akhir pendinginan 217 BU, viskositas retrogradasi 208 BU, dan viskositas balik 49 BU. Oleh karena itu, penelitian ini berhasil menyimpulkan bahwa tepung komposit dengan formulasi TOF: 82,64%, tapioka: 17,54%, GX: 0,10% merupakan perlakuan terbaik yang dapat dijadikan sebagai alternatif tepung bebas-gluten berbahan baku lokal. Hal ini menunjukkan bahwa tepung komposit dengan formulasi 82,64% tepung onggok terfermentasi, mempunyai potensi khusus untuk dikembangkan sebagai tepung bebas-gluten berbahan baku lokal.

Optimization of Characteristic of Fermented Cassava Bagasse Flour-Based Composite Flour using Response Surface Methodology

Abstract

The development of composite flour in tropical countries is mainly directed at gluten-free flour made from local raw materials. The research was aimed to obtain an optimal formula of composite flour that was made of fermented cassava bagasse flour (FCBF), tapioca, and xanthan gum (XG) to produce composite flour with best characteristics quality as gluten-free flour. Optimization of the composite flour characteristics was done using the response surface methodology with the central composite design model. Optimization results using numerical methods shown that the optimal characteristics of composite flour were obtained in formulas 1) FCBF: 82.46%, tapioca: 17.54%, XG: 0.10%, 2) FCBF: 83.85%, tapioca: 16.15%, XG: 0.10%, and 3) FCBF: 84.13%, tapioca: 15.87%, XG: 0.10%. The optimal formulas were analyzed for pasting characteristics, including peak temperature, maximum viscosity, trough viscosity, final viscosity, retrogradation viscosity, and setback viscosity. The results of pasting characteristic test on optimal formulation showed that FCBF formulation: 82.64%, tapioca: 17.50%, XG: 0.10% had the best pasting properties with peak viscosity of 215 BU, trough viscosity of 166 BU, final viscosity of 217 BU, retrogradation viscosity of 208 BU, and setback viscosity of 49 BU. As conclusion, formula of FCBF: 82.64%, tapioca: 17.50%, XG: 0.10% was chosen as the best formula to produce gluten-free flour from local raw materials. This indicates that composite flour with formulation of 82,64% fermented cassava bagasse flour, potentially developed as gluten-free flour made from local raw materials. 
Fulltext View|Download
Keywords: cassava bagasse; response surface methodology; gluten-free composite flour; onggok; tepung komposit bebas-gluten

Article Metrics:

  1. Aluge, O.O., Akinola, S.A., Osundahunsi, O.F. 2016. Effect of malted sorghum on quality characteristics of wheat-sorghum-soybean flour for potential use in confectionaries. Food and Nutrition Sciences 7:1241-1252. DOI: 10.4236/fns.2016.713114
  2. Awolu, O.O. 2017. Optimization of the functional characteristics, pasting and rheological properties of pearl millet-based composite flour. Heliyon 3 (2017) e00240. DOI: 10.1016/j.heliyon.2017.e00240
  3. Bamigbola, Y.A., Awolu, O.O., Oluwalana, I.B. 2016. The effect of plantain and tigernut flours substitution on the antioxidant, physicochemical and pasting properties of wheat-based composite flours. Cogent Food & Agriculture 2:1245060. DOI: 10.1080/23311932.2016.1245060
  4. Chandra, S., Shamsher. 2013. Assessment of functional properties of different flours. African Journal of Agricultural Research 8(38):4849-4852. DOI: 10.5897/AJAR2013.6905
  5. Codex Alimentarius. 1989. Codex Standard for Edible Cassava Flour. CODEX STAN 176-1989, Codex Aliment. Comm. FAO/OMS
  6. Eke-Ejiofor, J., Beleya, E.A., Onyekwe, J.C. 2017. Mineral bioavailability, physico-chemical and sensory properties of granola produced from different cereals and processing methods. American Journal of Food Science and Technology 5(6):256-264. DOI: 10.12691/ajfst-5-6-6
  7. Gobbetti, M., Pontonio, E., Filannino, P., Rizzello, C.G., De Angelis, M., Di Cagno, R. 2018. How to improve the gluten-free diet: The state of the art from a food science perspective. Food Research International 110:22–32. DOI: 10.1016/j.foodres.2017.04.010
  8. Hidayat, B., Hasanudin, U., Nurdjanah, S., Yuliana, N. 2018a. Improvement of cassava bagasse flour characteristics to increase their potential use as food. IOP Conf. Ser.: Earth Environ. Sci., 209: 012006. DOI: 10.1088/1755-1315/209/1/012006
  9. Hidayat, B., Muslihudin, M., Akmal, S. 2018b. Perubahan karakteristik fisikokimia tepung onggok selama proses fermentasi padat menggunakan Saccharomyces cerevisiae. Jurnal Penelitian Pertanian Terapan 18 (3):146-152. DOI: 10.1111/j.1745-549.1995.tb00301.x
  10. Jnawali, P., Kumar, V., Tanwar, B. 2016. Celiac disease: Overview and considerations for development of gluten-free foods. Food Science and Human Wellness 5:169–176. DOI: 10.1016/j.fshw.2016.09.003
  11. Ju, J., Mittal, G.S. 1995. Physical properties of various starch-based fat substitutes. Journal of Food Processing and Preservation 19:361-383. DOI: 10.1111/j.1745-549.1995.tb00301.x
  12. Kaewwongsa, W., Traiyakun, S., Yuangklang, C., Wachirapakorn, C., Paengkoum, P. 2011. Protein enrichment of cassava pulp fermentation by Saccharomyces cerevisiae. Journal of Animal and Veterinary Advances 10(18):2434-2440. DOI: 10.3923/javaa.2011.2434.2440
  13. Lazaridou, A., Duta, D., Papageorgiou, M., Belc, N., Biliaderis, C.G. 2007. Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering 79:1033–1047. DOI: 10.1016/j.jfoodeng.2006.03.032
  14. Marta, H., Marsetio, Cahyana, Y., Pertiwi, A.G. 2016. Sifat fungsional dan amilografi pati millet putih. Jurnal Aplikasi Teknologi Pangan 5(3):76-84. DOI: 10.17728/jatp.175
  15. Mir, S.A., Shah, M.A., Naik, H.R., Zargar, I.A. 2016. Influence of hydrocolloids on dough handling and technological properties of gluten-free breads. Trends in Food Science & Technology 51:49-57. DOI: 10.1016/j.tifs.2016.03.005
  16. Narayana, K., Rao, M.S.N. 1982. Functional properties of raw and heat processed winged bean (Psophocarpus tetragonolobus) flour 47(5):1534-1538. DOI: 10.1111/j.1365-2621.1982.tb04976.x
  17. Oladele, A.K., Aina, J.O. 2007. Chemical composition and functional properties of flour produced from two varieties of tigernut (Cyperus esculentus). African Journal of Biotechnology 6(21):2473-2476. DOI: 10.5897/AJB2007.000-2391
  18. Shittu, T.A., Raji, A.O., Sanni, L.O. 2004. Bread from composites cassava-wheat flour: I. Effect of baking time and temperature on some physical properties of bread loaf. Food Research International 40:280-290. DOI: 10.1016/j.foodres.2006.10.012
  19. Sciarini, L.S., Ribotta, P.D., Leon, A.E., Perez, G.T. 2014. Effect of hydrocolloids on gluten-free batter properties and bread quality. International Journal of Food Science and Technology 45:2306-2312. DOI: 10.1111/j.1365-2621.2010.02407.x
  20. Yano, H. 2019. Recent practical researches in the development of gluten-free breads. Science of Food 3:1–8. DOI: 10.1038/s41538-019-0040-1
  21. Zaidul, I.S.M., Norulaini, N.A.N., Omar, A.K.M., Yamauchi, H., Noda, T. 2007. RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches. Carbohydrate Polymers 69:784–791. DOI: 10.1016/j.carbpol.2007.02.021

Last update:

No citation recorded.

Last update:

No citation recorded.