JAFT • pISSN 2355-9152 • eISSN 2614-7076 • Member of CrossRef®
skip to main content

Development and Characterization of Calcium Lactate-Activated Sodium Alginate-Gum Arabic Edible Films

Sri Mulyani  -  Department of Food Technology, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang 50275, Indonesia
Mohamad Rizky Dharmawan  -  Department of Food Technology, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang 50275, Indonesia
Inish Chris Mesias  -  Department of Food Science and Technology, College of Agriculture and Food Science, Visayas State University, 6521-A, Philippines, Philippines
*Yoga Pratama orcid scopus  -  Department of Food Technology, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang 50275, Indonesia
Open Access Copyright 2025 Journal of Applied Food Technology

Citation Format:
Abstract

Indonesia generated approximately 12.87 million tons of plastic waste in 2023, highlighting the urgent need to develop biodegradable alternatives such as edible films. This study investigated the effect of sodium alginate - gum arabic ratios on the physical and mechanical properties of edible films, combined with a calcium lactate spray activation technique aimed at enhancing film crosslinking, fasten gelling speed and improve performance. A completely randomized design with four treatments (1:1, 2:1, 3:1, and 4:1 ratios of sodium alginate and gum arabic) and five replications was applied. Parameters evaluated included thickness, water vapor transmission rate (WVTR), tensile strength, elongation, and microscopic morphology. Results showed that higher sodium alginate concentrations significantly increased film thickness (0.023– 0.094 mm) and significantly improved barrier properties, as indicated by lower WVTR values (69–94 g/m²/day). Tensile strength varied across treatments, reaching the highest value at the 1:1 ratio (8.24 MPa), while elongation peaked at the 2:1 ratio (30.94%), suggesting an optimal balance between flexibility and strength. Microscopic observation revealed fewer air bubbles and more homogeneous structures at higher sodium alginate levels. The introduction of calcium lactate spray activation, rather than conventional immersion or solution mixing, represents a novel crosslinking strategy that is suitable for edible film production. This method demonstrates a promising pathway toward the development of sustainable and high-performance biodegradable packaging materials.

Fulltext View|Download
Keywords: edible film; sodium alginate; gum arabic; calcium lactate; mechanical properties

Article Metrics:

  1. Buchwalder, S., Nicolier, C., Hersberger, M., Bourgeois, F., Hogg, A., Burger, J. 2023. Development of a Water Transmission Rate (WTR) Measurement System for Implantable Barrier Coatings. Polymers 15(11): 2557. DOI: 10.3390/polym15112557
  2. Cao, L., Lu, W., Mata, A., Nishinari, K., Fang, Y. 2020. Egg-box model-based gelation of alginate and pectin: A review. Carbohydrate Polymers 242 116389. DOI: 10.1016/j.carbpol.2020.116389
  3. Chakravartula, S.S.N., Soccio, M., Lotti, N., Balestra, F., Dalla Rosa, M., Siracusa, V. 2019. Characterization of Composite Edible Films Based on Pectin/Alginate/Whey Protein Concentrate. Materials 12(15): 2454. DOI: 10.3390/ma12152454
  4. Erben, M., Pérez, A.A., Osella, C.A., Alvarez, V.A., Santiago, L.G. 2019. Impact of gum arabic and sodium alginate and their interactions with whey protein aggregates on bio-based films characteristics. International Journal of Biological Macromolecules 125 999–1007. DOI: 10.1016/j.ijbiomac.2018.12.131
  5. Eslami, Z., Elkoun, S., Robert, M., Adjallé, K. 2023. A Review of the Effect of Plasticizers on the Physical and Mechanical Properties of Alginate-Based Films. Molecules 28(18): 6637. DOI: 10.3390/molecules28186637
  6. Giz, A.S., Berberoglu, M., Bener, S., Aydelik-Ayazoglu, S., Bayraktar, H., Alaca, B.E., Catalgil-Giz, H. 2020. A detailed investigation of the effect of calcium crosslinking and glycerol plasticizing on the physical properties of alginate films. International Journal of Biological Macromolecules 148 49–55. DOI: 10.1016/j.ijbiomac.2020.01.103
  7. Hadi, A., Nawab, A., Alam, F., Zehra, K. 2022. Alginate/aloe vera films reinforced with tragacanth gum. Food Chemistry: Molecular Sciences 4 100105. Elsevier. DOI: 10.1016/J.FOCHMS.2022.100105
  8. Jeong, C., Kim, S., Lee, C., Cho, S., Kim, S.-B. 2020. Changes in the Physical Properties of Calcium Alginate Gel Beads under a Wide Range of Gelation Temperature Conditions. Foods 9(2): 180. DOI: 10.3390/foods9020180
  9. Kocira, A., Kozłowicz, K., Panasiewicz, K., Staniak, M., Szpunar-Krok, E., Hortyńska, P. 2021. Polysaccharides as Edible Films and Coatings: Characteristics and Influence on Fruit and Vegetable Quality—A Review. Agronomy 11(5): 813. DOI: 10.3390/agronomy11050813
  10. Lan, W., He, L., Liu, Y. 2018. Preparation and Properties of Sodium Carboxymethyl Cellulose/Sodium Alginate/Chitosan Composite Film. Coatings 8(8): 291. DOI: 10.3390/coatings8080291
  11. Li, X., Qiao, Y., Liu, H. 2025. Biological activities and health benefits of sodium alginate: A review. Journal of Functional Foods 129 106856. DOI: 10.1016/j.jff.2025.106856
  12. Liah, J.L., Lahming, Rauf, R.F. 2023. The Effect of Additional Lemongrass Extract (Cymbopogon nardus L.) on the Characteristics of Edible Film Sodium Alginate and Arabic Gum. Formosa Journal of Science and Technology 2(8): 2055–2068. PT Formosa Cendekia Global. DOI: 10.55927/fjst.v2i8.5722
  13. Liu, Z., Zhao, M., Zhang, Z., Li, C., Xia, G., Shi, H., Liu, Z. 2023. Chitosan-based edible film incorporated with wampee (Clausena lansium) seed essential oil: Preparation, characterization and biological activities. International Journal of Biological Macromolecules 253 127683. DOI: 10.1016/j.ijbiomac.2023.127683
  14. Luan, Q., Wang, Y., Chen, Y., Chen, H. 2025. Review on improvement of physicochemical properties of sodium alginate‐based edible films. Journal of Food Science 90(2):. DOI: 10.1111/1750-3841.70016
  15. Malaka, R., Maruddin, F., Arief, F.A., Hakim, W., Irwansyah, Kasmiati, Putranto, W.S., et al. 2024. Evaluation Dangke Cheese Processing by Edible Film Coating Made from Whey Combined with Konjac Flour. Journal of Food Processing and Preservation 2024 1–11. DOI: 10.1155/2024/4676923
  16. Malektaj, H., Drozdov, A.D., deClaville Christiansen, J. 2023. Mechanical Properties of Alginate Hydrogels Cross-Linked with Multivalent Cations. Polymers 15(14): 3012. DOI: 10.3390/polym15143012
  17. Mohamed, S.A., Elsherbini, A.M., Alrefaey, H.R., Adelrahman, K., Moustafa, A., Egodawaththa, N.M., Crawford, K.E., et al. 2025. Gum Arabic: A Commodity with Versatile Formulations and Applications. Nanomaterials 15(4): 290. DOI: 10.3390/nano15040290
  18. Muna, A., Wicaksono, R., Wibowo, C. 2023. Characterization of Layer-by-Layer Biodegradable Films Based on Hydroxypropyl Methylcellulose-Nanochitosan. Journal of Applied Food Technology 10(2): 37–47. Dept. Food Technology, Faculty of Animal and Agricultural Sciences, Diponegoro University. DOI: 10.17728/JAFT.20868
  19. Olivas, G.I., Barbosa-Cánovas, G. V. 2008. Alginate–calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT - Food Science and Technology 41(2): 359–366. DOI: 10.1016/j.lwt.2007.02.015
  20. Oliveira, I., Pinto, T., Afonso, S., Karaś, M., Szymanowska, U., Gonçalves, B., Vilela, A. 2025. Sustainability in Bio-Based Edible Films, Coatings, and Packaging for Small Fruits. Applied Sciences 15(3): 1462. DOI: 10.3390/app15031462
  21. Pratama, Y., Abduh, S.B.M., Legowo, A.M., Hintono, A. 2019. Effect of chitosan-palm olein emulsion incorporation on tapioca starch-based edible film properties. International Food Research Journal 26(1): 203–208
  22. Rahmawati, P.A., Dewi, D.M.A., Hanif, M.L.F. 2024. Utilization of Edible Film and Edible Coating as Eco Friendly Packaging instead of synthetic packaging. Journal Agrifoodtech 3(1): 9–21. Retrieved from https://jurnal2.untagsmg.ac.id/index.php/agrifoodtech
  23. Rahmiatiningrum, N., Sukardi, S., Warkoyo, W. 2019. Study of Physical Characteristic, Water Vapor Transmission Rate and Inhibition Zones of Edible Films from Aloe vera (Aloe barbadensis) Incorporated with Yellow Sweet Potato Starch and Glycerol. Food Technology and Halal Science Journal 2(2): 195. DOI: 10.22219/fths.v2i2.12985
  24. Rojas-Graü, M.A., Avena-Bustillos, R.J., Olsen, C., Friedman, M., Henika, P.R., Martín-Belloso, O., Pan, Z., et al. 2007. Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. Journal of Food Engineering 81(3): 634–641. Elsevier. DOI: 10.1016/J.JFOODENG.2007.01.007
  25. Senturk Parreidt, T., Müller, K., Schmid, M. 2018. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 7(10): 170. DOI: 10.3390/foods7100170
  26. Setyorini, D., Nurcahyani, P.R. 2016. Effect of addition of semi refined carrageenan on mechanical characteristics of gum arabic edible film. IOP Conference Series: Materials Science and Engineering. p. 1–7. DOI: 10.1088/1757-899X/128/1/012011
  27. Soazo, M., Báez, G., Barboza, A., Busti, P.A., Rubiolo, A., Verdini, R., Delorenzi, N.J. 2015. Heat treatment of calcium alginate films obtained by ultrasonic atomizing: Physicochemical characterization. Food Hydrocolloids 51 193–199. DOI: 10.1016/j.foodhyd.2015.04.037
  28. Suhasini, M.R., Rajeshwari, K.M., Bindya, S., Hemavathi, A.B., Vishwanath, P.M., Syed, A., Eswaramoorthy, R., et al. 2023. Pectin/PVA and pectin-MgO/PVA films: Preparation, characterization and biodegradation studies. Heliyon 9(5): e15792. DOI: 10.1016/j.heliyon.2023.e15792
  29. Sun, J., Wang, L., Chen, H., Yin, G. 2023. Preparation and Application of Edible Film Based on Sodium Carboxymethylcellulose-Sodium Alginate Composite Soybean Oil Body. Coatings 13(10): 1716. DOI: 10.3390/coatings13101716
  30. Syarifuddin, A., Haliza, N., Izzah, N., Tahir, M.M., Dirpan, A. 2025. Physical, Mechanical, Barrier, and Optical Properties of Sodium Alginate/Gum Arabic/Gluten Edible Films Plasticized with Glycerol and Sorbitol. Foods 2025, Vol. 14, Page 1219 14(7): 1219. Multidisciplinary Digital Publishing Institute. DOI: 10.3390/FOODS14071219
  31. Tordi, P., Ridi, F., Samorì, P., Bonini, M. 2025. Cation‐Alginate Complexes and Their Hydrogels: A Powerful Toolkit for the Development of Next‐Generation Sustainable Functional Materials. Advanced Functional Materials 35(9):. DOI: 10.1002/adfm.202416390
  32. Tupuna-Yerovi, D.S., Schmidt, H., Rios, A. de O. 2025. Biodegradable sodium alginate films incorporated with lycopene and β-carotene for food packaging purposes. Food Science and Technology International 31(1): 23–35. SAGE PublicationsSage UK: London, England. DOI: 10.1177/10820132231172362
  33. Venkatachalam, K., Charoenphun, N., Nitikornwarakul, C., Lekjing, S. 2025. Effect of Sodium Alginate Concentration on the Physicochemical, Structural, Functional Attributes, and Consumer Acceptability of Gel Beads Encapsulating Tangerine Peel (Citrus reticulata Blanco ‘Cho Khun’) Extract. Gels 11(10): 808. DOI: 10.3390/gels11100808
  34. Yao, J., Zhou, Y., Chen, X., Ma, F., Li, P., Chen, C. 2018. Effect of sodium alginate with three molecular weight forms on the water holding capacity of chicken breast myosin gel. Food Chemistry 239 1134–1142. DOI: 10.1016/j.foodchem.2017.07.027
  35. Ravindran, R., & Jaiswal, A. K. (2019). Wholesomeness and safety aspects of irradiated foods. In Food Chemistry (Vol. 285, pp. 363–368). Elsevier Ltd. https://doi.org/10.1016/j.foodchem.2019.02.002
  36. Siegrist, M. (2008). Factors influencing public acceptance of innovative food technologies and products. Trends in Food Science and Technology, 19(11), 603–608. https://doi.org/10.1016/j.tifs.2008.01.017
  37. Siegrist, M., & Hartmann, C. (2020). Consumer acceptance of novel food technologies. In Nature Food (Vol. 1, Issue 6, pp. 343–350). Springer Nature. https://doi.org/10.1038/s43016-020-0094-x
  38. Silindir, M., & Özer, A. Y. (2009). Sterilization Methods and the Comparison of E-Beam Sterilization with Gamma Radiation Sterilization. In J. Pharm. Sci (Vol. 34)
  39. Singh, R., & Singh, A. (2019). Food irradiation: An established food processing technology for food safety and security. Defence Life Science Journal, 4(4), 206–213. https://doi.org/10.14429/dlsj.4.14397
  40. The Economist Intelligence Unit. (2016). Fixing Food – Towards a More Sustainable Food System. https://impact.economist.com/perspectives/health/fixing-food-2016-towards-more-sustainable-food-system
  41. Wang, K., Pang, X., Zeng, Z., Xiong, H., Du, J., Li, G., & Baidoo, I. K. (2023). Research on irradiated food status and consumer acceptance: A Chinese perspective. In Food Science and Nutrition (Vol. 11, Issue 9, pp. 4964–4974). John Wiley and Sons Inc. https://doi.org/10.1002/fsn3.3511
  42. World Health Organization. (2015). WHO estimates of the global burden of foodborne diseases : foodborne disease burden epiemiology reference group 2007-2015. World Health Organization. https://iris.who.int/handle/10665/199350

Last update:

No citation recorded.

Last update:

No citation recorded.