JAFT • pISSN 2355-9152 • eISSN 2614-7076 • Member of CrossRef®
skip to main content

Sustainable Marine Macroalgal Polysaccharide Films and Coatings: Toward Active and Intelligent Food Packaging System

*Sweta Sinha orcid  -  Amity University Jharkhand, India
Open Access Copyright 2025 Journal of Applied Food Technology

Citation Format:
Cover Image
Abstract

Marine macroalgal polysaccharides have emerged as sustainable biopolymers with immense potential for developing active and intelligent food packaging systems. Derived from abundant and renewable seaweed biomass, polysaccharides such as alginate, agar, carrageenan, laminarin, ulvan and fucoidan exhibit excellent film-forming ability, biodegradability, and non-toxicity. Their intrinsic antioxidant and antimicrobial properties make them ideal for packaging materials that not only protect food but also enhance shelf life and quality. This review (2020-2025) comprehensively examines the extraction techniques, structural diversity and functionalities of marine polysaccharide, highlighting their suitability for edible films, coatings, and biodegradable bioplastics. Recent advancements in polymer blending, nanocomposite formation, and cross-linking strategies are discussed, which significantly improve mechanical strength, thermal stability, and barrier properties. Additionally, the integration of natural bioactive compounds enables real-time monitoring of food freshness, transforming conventional packaging into active and intelligent systems. Although challenges such as moisture sensitivity, moderate mechanical strength, and production scalability remain, marine macroalgal polysaccharides represent a promising and sustainable alternative to conventional plastics. By supporting circular economy principles and sustainable packaging initiatives, these biopolymers present innovative solutions to mitigate plastic pollution, reduce food waste, and promote environmental responsibility. This review highlights their potential to catalyze a paradigm shift in the food packaging sector, advancing high-performance, safe, and eco-friendly applications.

Fulltext View|Download
Keywords: Marine macroalgae Polysaccharide; Edible films; Antimicrobial; Food Safety; Active and Intelligent packaging
Funding: NA

Article Metrics:

  1. Acharyya, P. P., Sarma, M., & Kashyap, A. (2024). Recent advances in synthesis and bioengineering of bacterial nanocellulose composite films for green, active and intelligent food packaging. Cellulose, 31(12), 7163-7187. https://doi.org/10.1007/s10570-024-05949-y
  2. Albertos, P., Martin-Diana, A. B., & Leal, S. (2019). Edible films based on agar, starch, and maltodextrins with extracts from Himanthalia elongata and Palmaria palmata for fish burger preservation. Food Hydrocolloids, 89, 917-927. https://doi.org/10.1016/j.foodhyd.2018.10.027
  3. Alam, M. W., Kumar, J. V., Awad, M., Saravanan, P., Al‐Sowayan, N. S., Rosaiah, P., & Nivetha, M. S. (2025). Emerging trends in food process engineering: integrating sensing technologies for health, sustainability, and consumer preferences. Journal of Food Process Engineering, 48(1), e70035. https://doi.org/10.1111/jfpe.70035
  4. Ali, M. Q., Azhar, M. A., Munaim, M. S. A., Ruslan, N. F., Alsubhi, L. M., Ahmad, N., & Noman, A. E. (2024). Seaweed organic compounds source of hydrocolloids and sustainable food packaging: Properties, application, and future direction. Discover Food, 4(1), 101. https://doi.org/10.1007/s44187-024-00101-w
  5. Alias, N. H., Abdullah, N., Othman, N. H., Marpani, F., Zainol, M. M., & Shayuti, M. S. M. (2022). Sustainability challenges and future perspectives of biopolymer. In Biopolymers: Recent Updates, Challenges and Opportunities (pp. 373-389). Springer International Publishing. https://doi.org/10.1007/978-3-031-15088-2_15
  6. Augusto, A., Carbone, I., Cosentino, S., & Pignatello, G. (2022). Application of a seaweed extract coating for the shelf-life extension of fresh-cut apples. Journal of Food Processing and Preservation, 46(1), e15761. https://doi.org/10.1111/jfpp.15761
  7. Badawy, M. E., & Rabea, E. I. (2018). Current applications in food preservation based on marine biopolymers. In Polymers for Food Applications (pp. 609-650). Springer. https://doi.org/10.1007/978-3-319-94625-2_22
  8. Baldwin, A. D. (2012). Development of polymer-polysaccharide hydrogels for controlling drug delivery (Doctoral dissertation, University of Delaware)
  9. Bamps, B., Buntinx, M., & Peeters, R. (2023). Seal materials in flexible plastic food packaging: A review. Packaging Technology and Science, 36(7), 507-532. https://doi.org/10.1002/pts.2731
  10. Balti, S., Ben Slama, R., Younes, I., Hajji, S., & Nasri, M. (2020). Effect of microalgal exopolysaccharide and red seaweed extract composite coatings on the quality changes of shrimp (Litopenaeus vannamei) during chilled storage. Food Control, 118, 107380. https://doi.org/10.1016/j.foodcont.2020.107380
  11. Caccamo, M. T., Zammuto, V., Spanò, A., Gugliandolo, C., & Magazù, S. (2022). Hydrating capabilities of the biopolymers produced by the marine thermophilic Bacillus horneckiae SBP3 as evaluated by ATR-FTIR spectroscopy. Materials, 15(17), 5988. https://doi.org/10.3390/ma15175988
  12. Carina, D., Sharma, S., Jaiswal, A. K., & Jaiswal, S. (2021). Seaweeds polysaccharides in active food packaging: A review of recent progress. Trends in Food Science & Technology, 110, 559-572. https://doi.org/10.1016/j.tifs.2021.02.022
  13. Charoensiddhi, S., Abraham, R. E., Su, P., & Zhang, W. (2020). Seaweed and seaweed-derived metabolites as prebiotics. Advances in Food and Nutrition Research, 91, 97-156
  14. Chong, E. W. N., Jafarzadeh, S., Paridah, M. T., Gopakumar, D. A., Tajaruddin, H. A., Thomas, S., & Abdul Khalil, H. P. S. (2019). Enhancement in the physico-mechanical functions of seaweed biopolymer film via embedding fillers for plasticulture application—a comparison with conventional biodegradable mulch film. Polymers, 11(2), 210. https://doi.org/10.3390/polym11020210
  15. Doh, E. H., Park, S. Y., Park, J. H., Jung, J. A., Lee, M. H., Jeon, Y., & Paik, S. H. (2020). Bioactive films prepared from seaweed extracts and cellulose nanocrystals for food packaging applications. Carbohydrate Polymers, 241, 116344. https://doi.org/10.1016/j.carbpol.2020.116344
  16. Dou, J., Sun, Y., Xu, Y., Zhu, F., & Hou, H. (2018). Effects of tea polyphenols on the antioxidant and antimicrobial properties of chitosan-alginate films for fish preservation. Food Control, 84, 137-145. https://doi.org/10.1016/j.foodcont.2017.08.038
  17. Fuzlin, A. F., Aynharan, S., Hafidz, N. N. A., Ghazali, N. M., Diantoro, M., Nagao, Y., & Samsudin, A. S. (2025). Advances in gel biopolymer electrolytes: sustainable polymers for energy storage applications. Polymers for Advanced Technologies, 36(8), e70319. https://doi.org/10.1002/pat.70319
  18. Ganesan, V., Kang, C. H., & Kim, S. K. (2018). Characterization and antioxidant activity of semi-refined carrageenan and ulvan blend films. International Journal of Biological Macromolecules, 110, 780-788. https://doi.org/10.1016/j.ijbiomac.2017.11.161
  19. Ghalsasi, P., Chithiravelu, G., & Joddar, B. (2025). Seaweed Derived Polysaccharides as Sustainable Biomaterials for Tissue Engineering Applications. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/acsbiomaterials.5c00001
  20. Gomaa, M. I., Abdel-Aziz, M. S., & Khalil, M. I. (2018). Development and characterization of bio-nanocomposite films based on chitosan, alginate and fucoidan for active food packaging. International Journal of Biological Macromolecules, 120, 193-203. https://doi.org/10.1016/j.ijbiomac.2018.08.067
  21. Hamad, G. M., Samy, H., Mehany, T., Korma, S. A., Eskander, M., Tawfik, R. G., ... & Khalifa, E. (2023). Utilization of algae extracts as natural antibacterial and antioxidants for controlling foodborne bacteria in meat products. Foods, 12(17), 3281. https://doi.org/10.3390/foods12173281
  22. He, Q., Sun, Y., Hu, H., Xu, Y., Jiang, W., Yu, A., & Jin, Y. (2016). Development of novel bioactive films from chitosan, carrageenan and ε-polylysine for extending shelf life of fresh meat. Food Control, 60, 442-450. https://doi.org/10.1016/j.foodcont.2015.08.026
  23. Iqbal, M. W., Riaz, T., Mahmood, S., Bilal, M., Manzoor, M. F., Qamar, S. A., & Qi, X. (2024). Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Critical Reviews in Food Science and Nutrition, 64(2), 354-380. https://doi.org/10.1080/10408398.2022.2108365
  24. Khalid, M. (2023). Polylactic Acid/Polyhydroxyalkanoate/Eggshell Based Hydroxyapatite Biocomposites for Bone Tissue Applications (Doctoral dissertation, Universiti Tun Hussein Onn Malaysia)
  25. Li, Z., Rawdkuen, S., Fei, T., & Zhang, W. (2025). Recent advances in gellan gum-based films and its application in sustainable food packaging: a review. Critical Reviews in Food Science and Nutrition, 1-22. https://doi.org/10.1080/10408398.2025.1234567
  26. Liu, J., Wang, S., Liu, Q., Sun, J., Sun, Z., & Li, C. (2019). Development of κ-carrageenan based active bio-films incorporated with mulberry polyphenol extract for enhancing the quality of milk. Food Hydrocolloids, 89, 928-937. https://doi.org/10.1016/j.foodhyd.2018.10.028
  27. Ma, Q., Xu, Y., Wang, Z., Jin, Y., Tian, S., & Sun, Y. (2019). Fabrication and characterization of bio-nanocomposite films based on sodium alginate, sodium carboxymethyl cellulose and Lactococcus lactis for enhancing the shelf life of fresh meat. Food Hydrocolloids, 89, 108-118. https://doi.org/10.1016/j.foodhyd.2018.10.009
  28. Mahcene, Z., Chibane, Y., Habibi, Y., Paula, M. D., Helfaoui, M., & Mbarkia, A. (2020). Antimicrobial and antioxidant properties of eucalyptus essential oil loaded in chitosan--alginate films for food packaging applications. International Journal of Biological Macromolecules, 164, 3821-3830. https://doi.org/10.1016/j.ijbiomac.2020.08.026
  29. Majinyari, D. E. (2021). Synthesis, Characterization and Antimicrobial Evaluation of Carrageenan/Tio2Nanocomposite Materials (Master's thesis, University of Dodoma)
  30. Mazumder, S., Bhattacharya, D., Lahiri, D., & Nag, M. (2025). Microbial-Mediated Biopolymers (Exopolysaccharide) in Food Packaging: A Current Time Approach in Food Safety. ACS Food Science & Technology. https://doi.org/10.1021/acsfoodscitech.5c00001
  31. Metha, C., Pawar, S., & Suvarna, V. (2024). Recent advancements in alginate-based films for active food packaging applications. Sustainable Food Technology, 2(5), 1246-1265. https://doi.org/10.1039/D4FB00056K
  32. Mudhoo, A., Mohee, R., Unmar, G. D., & Sharma, S. K. (2011). Degradation of biodegradable and green polymers in the composting environment
  33. Perera, K. Y., Sharma, S., Pradhan, D., Jaiswal, A. K., & Jaiswal, S. (2021). Seaweed polysaccharide in food contact materials (active packaging, intelligent packaging, edible films, and coatings). Foods, 10(9), 2088. https://doi.org/10.3390/foods10092088
  34. Periyasamy, T., Asrafali, S. P., & Lee, J. (2025). Recent Advances in Functional Biopolymer Films with Antimicrobial and Antioxidant Properties for Enhanced Food Packaging. Polymers, 17(9), 1257. https://doi.org/10.3390/polym17091257
  35. Qamar, S. A., Junaid, M., Riasat, A., Jahangeer, M., Bilal, M., & Mu, B. Z. (2024). Carrageenan‐based hybrids with biopolymers and nano‐structured materials for biomimetic applications. Starch‐Stärke, 76(1-2), 2200018. https://doi.org/10.1002/star.202200018
  36. Quitério, E., Grosso, C., Ferraz, R., Delerue-Matos, C., & Soares, C. (2022). A critical comparison of the advanced extraction techniques applied to obtain health-promoting compounds from seaweeds. Marine Drugs, 20(11), 677. https://doi.org/10.3390/md20110677
  37. Rahman Khan, M. M., Rumon, M. M. H., & Islam, M. (2024). Synthesis, Rheology, Morphology, and Mechanical Properties of Biodegradable PVA-Based Composite Films: A Review on Recent Progress. Processes, 12(12), 2345. https://doi.org/10.3390/pr12122345
  38. Ramani, M., & Murugan, K. (2020). Effect of seaweed Kappaphycus alvarezii extract coating on quality preservation of tomato fruits during storage. Scientifica, 2020, 8892183. https://doi.org/10.1155/2020/8892183
  39. Reboleira, J., Mendes, R., Amaro, M. I., Oliveira, A. P., Baptista, R. M., Malcata, F. X., & Pintado, M. (2020). Active biofilms based on Plocamium diocia extract and polyvinyl alcohol for minced chicken breast preservation. Food Packaging and Shelf Life, 25, 100593. https://doi.org/10.1016/j.fpsl.2020.100593
  40. Rizal, O., Nurhayati, R., Yuliana, M., & Syah, Y. M. (2023). Development of bio-based films from seaweed polymers (Kappaphycus alvarezii) and coffee waste for food packaging applications. Food Research, 5(2), 311-320. https://doi.org/10.26656/fr.2023.5(2).821
  41. Rodríguez‐Núñez, J. R., Montoya‐Anaya, D. G., Fortiz‐Hernández, J., Freile‐Pelegrín, Y., & Madera‐Santana, T. J. (2023). Main Marine Biopolymers for Food Packaging Film Applications. In Natural Materials for Food Packaging Application (pp. 199-240). https://doi.org/10.1002/9781119860563.ch10
  42. Ross, F. W., Boyd, P. W., Filbee-Dexter, K., Watanabe, K., Ortega, A., Krause-Jensen, D., ... & Macreadie, P. I. (2023). Potential role of seaweeds in climate change mitigation. Science of the Total Environment, 885, 163699. https://doi.org/10.1016/j.scitotenv.2023.163699
  43. Salehi, B., Sharifi-Rad, J., Seca, A. M., Pinto, D. C., Michalak, I., Trincone, A., ... & Martins, N. (2019). Current trends on seaweeds: Looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules, 24(22), 4182. https://doi.org/10.3390/molecules24224182
  44. Sarker, N. K., & Kaparaju, P. (2024). Microalgal bioeconomy: a green economy approach towards achieving sustainable development goals. Sustainability, 16(24), 11218. https://doi.org/10.3390/su162411218
  45. Setyawidati, I., Yahya, R., & Antonius, A. (2018). Effect of alginate coating with pomegranate peel extract on quality of capsicum during storage. Food Research, 2(2), 315-322. https://doi.org/10.26656/fr.2017.2(2).047
  46. Sharifian, S., & Homaei, A. (2022). Marine-derived polysaccharides: prospects for future pharmaceuticals and drug delivery systems. In Marine Biomaterials: Drug Delivery and Therapeutic Applications (pp. 403-453). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-4785-2_12
  47. Sharma, B., & Hoque, M. E. (Eds.). (2023). Polysaccharides: Advanced Polymeric Materials. CRC Press
  48. Sinha, S. (2023). Synthesis of biopolymer based superabsorbent: An eco-friendly approach towards future sustainability. In Bio-based superabsorbents: recent trends, types, applications and recycling (pp. 29-49). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3094-4_2
  49. Sinha, S. (2024). An overview of biopolymer-derived packaging material. Polymers from Renewable Resources, 15(2), 193-209. https://doi.org/10.1177/20412479241226884
  50. Sinha, S. (2024). Food Security Challenges and Microplastics: A Comprehensive Review. In Microplastics in African and Asian Environments: The Influencers, Challenges, and Solutions (pp. 361-371). https://doi.org/10.1007/978-3-031-50033-2_18
  51. Sinha, S., Singh, S., & Dey, K. P. (2024). Microplastics: A significant threat to freshwater ecosystems. In Sustainable Microbial Technology for Synthetic and Cellulosic Microfiber Bioremediation (pp. 91-105). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-54542-7_4
  52. Smola-Dmochowska, A., Lewicka, K., Macyk, A., Rychter, P., Pamuła, E., & Dobrzyński, P. (2023). Biodegradable polymers and polymer composites with antibacterial properties. International Journal of Molecular Sciences, 24(8), 7473. https://doi.org/10.3390/ijms24087473
  53. Surendren, A. (2024). Development of Thermoplastic Starch-based Polymeric Blends and Composites Engineered with Extrusion Cast and Blown Films for Packaging Applications (Doctoral dissertation, University of Guelph)
  54. Thapliyal, D., Tewari, K., Verma, S., Bhargava, C. K., Sen, P., Mehra, A., ... & Arya, R. K. (2024). Introduction: The Evolution of Functional Coatings from Protection to Innovation. In Functional Coatings for Biomedical, Energy, and Environmental Applications (pp. 1-30). https://doi.org/10.1002/9781394256379.ch1
  55. Tian, J. (2024). Advanced Structural Characterization of Nanocellulose-Based Materials for Environmental Applications (Doctoral dissertation, State University of New York at Stony Brook)
  56. Tyagi, P., Agate, S., Velev, O. D., Lucia, L., & Pal, L. (2022). A critical review of the performance and soil biodegradability profiles of biobased natural and chemically synthesized polymers in industrial applications. Environmental Science & Technology, 56(4), 2071-2095. https://doi.org/10.1021/acs.est.1c03335
  57. Ulrich, G. D., & Faez, R. (2022). Thermal, mechanical and physical properties of composite films developed from seaweed polysaccharides/cellulose nanofibers. Journal of Polymers and the Environment, 30(9), 3688-3700. https://doi.org/10.1007/s10924-022-02443-z
  58. Venugopal, V. (2019). Applications of marine polysaccharides in food processing. In Enzymatic Technologies for Marine Polysaccharides (pp. 25-46). CRC Press
  59. Wang, S., Liu, Q., Wang, Y., Sun, J., Sun, Z., & Li, C. (2018). Enhanced mechanical properties and water vapor barrier of agar films reinforced with bacterial cellulose nanofibers and halloysite nanotubes. Carbohydrate Polymers, 192, 144-153. https://doi.org/10.1016/j.carbpol.2018.03.024
  60. Webb, R. M., & Silverman-Roati, K. (2023). Ocean CDR approaches. In Ocean Carbon Dioxide Removal for Climate Mitigation (pp. 20-39). Edward Elgar Publishing
  61. Wu, S. C. (2017). Antioxidant activity of sulfated seaweeds polysaccharides by novel assisted extraction. In Solubility of Polysaccharides (pp. 89-108). IntechOpen. https://doi.org/10.5772/intechopen.68385
  62. Yerramathi, R. R., Chaudhary, V., Rajput, M. K., Randhawa, G. S., & Jang, J. Y. (2021). Development of novel alginate-based biocomposite films incorporated with ferulic acid for enhanced antioxidant and antimicrobial activities. International Journal of Biological Macromolecules, 182, 1470-1481. https://doi.org/10.1016/j.ijbiomac.2021.05.184
  63. Zhang, Y., Sun, B., Xu, X., Wu, Y., Fan, Y., & Gao, Y. (2018). Physical, mechanical and antibacterial properties of sodium alginate/ε-polylysine blend films incorporated with capsaicin. Food Hydrocolloids, 80, 307-316. https://doi.org/10.1016/j.foodhyd.2018.02.016
  64. Zheng, M., Wang, L., Hong, T., Li, Z., Zhu, Y., Jiang, Z., ... & Ou, Y. (2025). Impact of Ultra-High Pressure Assisted Alkaline Extraction on Properties and Structural Characteristics of Carrageenan. Food Hydrocolloids, 112039. https://doi.org/10.1016/j.foodhyd.2025.112039
  65. Zhou, F., Liu, Q., Wang, Y., Li, C., Zhu, X., & Fan, W. (2021). Development and characterization of edible coatings based on kappa-carrageenan, konjac glucomannan, and camellia oil for improving the quality of chicken breast during refrigerated storage. Food Chemistry, 362, 130222. https://doi.org/10.1016/j.foodchem.2021.130222

Last update:

No citation recorded.

Last update:

No citation recorded.