Peanut (Arachis hypogaea) Shells Extract and Apis dorsata Honey Reduce Matrix Metalloproteinase-3 in Monosodium Iodoacetate-Induced Osteoarthritic Rats

Bella Stevanny orcid  -  Sriwijaya University, Indonesia
*Tungki Pratama Umar orcid  -  Sriwijaya University, Indonesia
Junoretta Haviva Ernanto orcid  -  Sriwijaya University, Indonesia
Rachmat Hidayat orcid  -  Sriwijaya University, Indonesia
Received: 27 May 2020; Revised: 11 Nov 2020; Accepted: 19 Nov 2020; Published: 31 Dec 2020; Available online: 31 Dec 2020.
DOI: https://doi.org/10.14710/jbtr.v6i3.7908 View
Covering letter
Subject
Type Covering letter
  Download (32KB)    Indexing metadata
List of Potential Reviewer
Subject
Type Other
  Download (13KB)    Indexing metadata
Peanut (Arachis hypogaea) Shells Extract and Apis dorsata Honey Reduce Matrix Metalloproteinase-3 in Monosodium Iodoacetate-Induced Osteoarthritic Rats
Subject
Type Camera Ready Manuscript
  Download (68KB)    Indexing metadata
Peanut (Arachis hypogaea) Shells Extract and Apis dorsata Honey Reduce Matrix Metalloproteinase-3 in Monosodium Iodoacetate-Induced Osteoarthritic Rats
Subject Copyright Transfer Agreement
Type Copyright Transfer Agreement
  Download (574KB)    Indexing metadata
Open Access
Citation Format:
Abstract

Background: Osteoarthritis is the most common degenerative joint disease worldwide but its treatment can cause serious adverse events. Ethanol extract of peanut shells contains luteolin functioned as its main anti-inflammatory and chondroprotective agent. Apis dorsata honey also contains anti-inflammatory and antioxidant agent, especially from Tualang honey type. Both have the potential to reduce inflammation and prevent articular degradation in osteoarthritis.

Objective: This study aims to determine the effect of peanut shells extract and Apis dorsata honey on matrix metalloproteinase-3 (MMP-3) level in monosodium iodoacetate-induced (MIA) osteoarthritic rats.

Methods: In this in vivo study, female Wistar rats (n=27) were randomly divided to nine groups containing three rats each. Treatment was given to group 1, 2, and 3: Tualang honey (TH) 25% + peanut shells extract (PSE) with 1%, 5%, and 10% concentration; group 4, 5, and 6: TH 50% + PSE with 1%, 5%, and 10% concentration; group 7: diclofenac sodium (positive control); group 8: aquadest (negative control); and group 9: aquadest (normal) for 10 days. We induced knee osteoarthritis by intraarticular injection of MIA in day 4. Anti-inflammatory and chondroprotective activities were evaluated with MMP-3 ELISA.

Results: The mixture of peanut shells extract and Apis dorsata honey significantly reduced MMP-3 level in group 1 (331.12 pg/ml), group 2 (291.73 pg/ml), group 3 (266.58 pg/ml), group 4 (274.15 pg/ml), group 5 (251.12 pg/ml), and group 6 (220.52 pg/ml) after 10 days of treatment. MMP-3 level was also evaluated in group 7 (169.61 pg/ml), group 8 (413.55 pg/ml), and group 9 (39 pg/ml). Compared to the negative control group, treatment and diclofenac groups showed significant effect in reducing MMP-3 level in patello-femoral articular cartilage.

Conclusion: Peanut shells extract and Apis dorsata honey showed antiinflammatory and chondroprotective effect by reducing MMP-3 level in MIA-induced osteoarthritic rats.

Note: This article has supplementary file(s).

Keywords: Apis dorsata honey; Inflammation; MMP-3; Osteoarthritis; Peanut shells extract
Funding: Ministry of Research, Technology and Higher Education of the Republic of Indonesia

Article Metrics:

  1. Haseeb, A., Haqqi, T.M. (2013). Immunopathogenesis of osteoarthritis. Clin Immunol, 146(3): 185-196. [DOI: 10.1016/j.clim.2012.12.011]
  2. Ghouri, A., Conaghan, P.G. (2019). Update on novel pharmacological therapies for osteoarthritis. Ther Adv Musculoskelet Dis, 11:1759720X1986449. [DOI: 10.1177/1759720x19864492]
  3. Wu, Y., Goh, E.L., Wang, D., Ma, S. (2018). Novel treatments for osteoarthritis: An update. Open Access Rheumatol, 10:135–140. [DOI: 10.2147/OARRR.S176666]
  4. Crofford, L.J. (2013). Use of NSAIDs in treating patients with arthritis. Arthritis Res Ther, 15(Suppl. 3):1-10. [DOI: 10.1186/ar4174]
  5. Grover, A.K., Samson, S.E. (2016). Benefits of antioxidant supplements for knee osteoarthritis: Rationale and reality. Nutr J, 15(1):1-13. [DOI: 10.1186/ar4174]
  6. Adhikari, B., Dhungana, S.K., Waqas, A.M., Adhikari, A., Kim, I.D., Shin, D.H. (2019). Antioxidant activities, polyphenol, flavonoid, and amino acid contents in peanut shell. J Saudi Soc Agric Sci. 18(4):437–42. [10.1016/j.jssas.2018.02.004]
  7. Qiu, J., Chen, L., Zhu, Q., Wang, D., Wang, W., Sun, X, Liu, X., Du, F. (2012). Screening natural antioxidants in peanut shell using DPPH-HPLC-DAD-TOF/MS methods. Food Chem, 135(4):2366–71. [DOI: 10.1186/ar4174]
  8. Ahmed, S., Othman, N.H. (2013). Review of the medicinal effects of tualang honey and a comparison with Manuka honey. Malays J Med Sci, 20(3):6–13. [PMID: 23966819]
  9. Hidayat, R., Safitri, R.A.A., Umar, T.P., Maretzka, A. (2018). The Efficacy of Sauropus androgynus Leaves Extract To Improve Cognitive Function in Wistar Rats Induced Alzheimer’s. Biosci Med J Biomed Transl Res, 2(3):35-44. [DOI: 10.32539/bsm.v2i3.61]
  10. Badan Pengawas Obat dan Makanan Republik Indonesia. (2013). Pedoman Teknologi Formulasi Sediaan berbasis Ekstrak. Jakarta: Badan Pengawas Obat dan Makanan Republik Indonesia
  11. Laher, F., Aremu, A.O., Van Staden, J., Finnie, J.F. (2013). Evaluating the effect of storage on the biological activity and chemical composition of three South African medicinal plants. South African J Bot, 88:414–8. [DOI: 10.1016/j.sajb.2013.09.003]
  12. Bandiola, T.M.B. (2018). Extraction and Qualitative Phytochemical Screening of Medicinal Plants: A Brief Summary. Int J Pharm, 8(1):137–43
  13. María, R., Shirley, M., Xavier, C., Jaime, S., David, V., Rosa, S., Jodie, D. (2018). Preliminary phytochemical screening, total phenolic content and antibacterial activity of thirteen native species from Guayas province Ecuador. J King Saud Univ – Sci, 30(4):500–5. [DOI: 10.1016/j.jksus.2017.03.009]
  14. Saleh, M.I., Hidayat, R. (2018). Panduan Penggunaan Hewan Coba dan Model Hewan Coba Dalam Penelitian Kedokteran dan Kesehatan. Palembang: Noer Fikri
  15. Takahashi, I., Matsuzaki, T., Kuroki, H., Hoso, M. (2018). Induction of osteoarthritis by injecting monosodium iodoacetate into the patellofemoral joint of an experimental rat model. PLoS One, 13(4):e0196625. [DOI: 10.1371/journal.pone.0196625]
  16. Cloud Clone Corp. (2020). SEA101Hu 96 Tests Enzyme-linked Immunosorbent Assay Kit For Matrix Metalloproteinase 3 (MMP3) [Internet]. SEA101Hu 96 Tests Enzyme-linked Immunosorbent Assay Kit For Matrix Metalloproteinase 3 (MMP3). Available from: http://www.cloud-clone.com/manual/ELISA-Kit-for-Matrix-Metalloproteinase-3-(MMP3)-SEA101Hu.pdf
  17. Aigner, T., McKenna, L. (2002). Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol Life Sci, 59:5–18. [DOI: 10.1007/s00018-002-8400-3]
  18. Kullich, W., Fagerer, N., Schwann, H. (2007). Effect of the NSAID nimesulide on the radical scavenger glutathione S-transferase in patients with osteoarthritis of the knee. Curr Med Res Opin, 23:1981–1986. [DOI: 10.1185/030079907X223486]
  19. Lin, P., Chen, C., Torzilli, P. (2004). Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthr Cartil, 12:485–496. [DOI: 10.1016/j.joca.2004.02.01]
  20. Wu, D., Zhong, H., Ding, Q., Ba, L. (2014). Protective effects of biochanin A on articular cartilage: in vitro and in vivo studies. BMC Complement Altern Med, 14(444):1–10. [DOI: 10.1186/1472-6882-14-444]
  21. Blom, A., van Lent, P., Libregts, S., Holthuysen, A., van der Kraan, P., van Rooijen, N, van den Berg, W. (2007). Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase-3. Arthritis Rheum, 56:147–57. [DOI: 10.1002/art.22337]
  22. Pengas, I., Eldridge, S., Assiotis, A., McNicholas, M., Mendes, J.E., Laver, L. (2018). MMP-3 in the peripheral serum as a biomarker of knee osteoarthritis, 40 years after open total knee meniscectomy. J Exp Orthop, 5(21):1–8. [DOI: 10.1186/s40634-018-0132-x]
  23. Sim, W.E., Lai, Y.S., Chang, Y.P. (2012). Antioxidant capacity, nutritional and phytochemical content of peanut (Arachis hypogaea L.) shells and roots. African J Biotechnol, 11(53):11547–51. [DOI: 10.5897/AJB11.4027]
  24. Radhakrishnan, R., Pae, S-B, Lee, B-K, Baek, I-Y. (2013). Evaluation of luteolin from shells of Korean peanut cultivars for industrial utilization. African J Biotechnol, 12(28):4477–80. [DOI: 10.5897/AJB2013.12911]
  25. Hindarto, C.K., Lestari, E.S., Irawan, C., Rochaeni, H. (2017). Antioxidant activity of luteolin extracted from nutshell waste Arachis Hypogea. Int J Res Pharm Pharm Sci, 2(6):28–30
  26. Kang, B.J., Ryu, J., Lee, C.J., Hwang, S.C. (2014). Luteolin Inhibits the Activity, Secretion and Gene Expression of MMP-3 in Cultured Articular Chondrocytes and Production of MMP-3 in the Rat Knee. Biomol Ther, 22(3):239–45. [DOI: 10.4062/biomolther.2014.020]
  27. Ma, J.D., Zhou, J.J., Zheng, D.H., Chen, L.F., Mo, Y.Q., Wei, X., Yang, L.J., Dai, L. (2014). Serum matrix metalloproteinase-3 as a noninvasive biomarker of histological synovitis for diagnosis of rheumatoid arthritis. Mediat Infamm, 2014:179284. [DOI: 10.1155/2014/179284]
  28. Jimoh-Abdulghaffaar, H., Owoyele, B. (2019). Honey reverses disease progression, inflammation and nociception in a rat model of osteoarthritis induced by monosodium iodoacetate in female wistar rats. IBRO Reports, 7:47–8. [DOI: 10.1016/j.ibror.2019.09.096]
  29. Su, S., Hua, Y., Wang, Y., Gu, W., Zhou, W., Duan, J.A., Jiang, H., Chen, T., Tang, Y. (2012). Evaluation of the antiinflammatory and analgesic properties of individual and combined extracts from Commiphora myrrha, and Boswellia carterii. J Ethnopharmacol, 139(2):649–55. [DOI: 10.1016/j.jep.2011.12.013]
  30. Yan, Y., Zhang, Z., Li, S., Ye, X., Li, X., He, K. (2013). Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia, 92:133–47. [DOI: 10.1016/j.fitote.2013.10.010]
  31. Comblain, F., Dubuc, J.E., Lambert, C., Sanchez, C., Lesponne, I., Serisier S, Henrotin, Y. (2016). Identification of Targets of a New Nutritional Mixture for Osteoarthritis Management Composed by Curcuminoids Extract, Hydrolyzed Collagen and Green Tea Extract. PLoS One, 11(6):e0156902. [DOI: 10.1371/journal.pone.0156902]
  32. Nirmal, P.S., Jagtap, S.D., Narkhede, A.N., Nagarkar, B.E., Harsulkar, A.M. New herbal composition (OA-F2) protects cartilage degeneration in a rat model of collagenase induced osteoarthritis. (2017). BMC Complement Altern Med, 17(6):1–11. [DOI: 10.1186/s12906-016-1535-9]
  33. Stajner, D., Popovic, B.M., Canadanovic-Brunet, J., Dilas, S., Cetkovic, G. Nutritive composition and free radical scavenger activity of honey enriched with of Rosa spp. (2014). LWT - Food Sci Technol, 55:408–13. [DOI: 10.1016/j.lwt.2013.08.025]
  34. Zhang, L., Virgous, C., Si, H. (2019). Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J Nutr Biochem, 69:19–30. [DOI: 10.1016/j.jnutbio.2019.03.009]

Last update: 2021-04-16 09:34:04

No citation recorded.

Last update: 2021-04-16 09:34:05

No citation recorded.