Jurnal pangan nasional "terakreditasi" Kemeristekdikti dari Indonesian Food Technologists® - IFT
skip to main content

Pembuatan nanopartikel pati jagung dengan teknik fotooksidasi menggunakan H2O2 dan lampu UV-C pada sistem tersirkulasi

*Niken Widya Palupi  -  Program Studi Doktor Ilmu Pangan, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Yogyakarta, Indonesia
Yudi Pranoto  -  Program Studi Doktor Ilmu Pangan, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Yogyakarta, Indonesia
Sutardi Sutardi  -  Program Studi Doktor Ilmu Pangan, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Yogyakarta, Indonesia

Citation Format:
Abstract

Dalam penelitian ini, nanopartikel pati (Starch Nano Particle (SNP)) disiapkan dengan metode sederhana, yakni melalui proses fotooksidasi dengan sistem sirkulasi dengan melibatkan H2O2 dan lampu UV-C. Tujuan dari penelitian ini adalah mengoptimasi konsentrasi perlakuan H2O2 dan lama proses fotooksidasi untuk menghasilkan nanopartikel pati jagung. Pati jagung diperoleh secara komersial dan dianalisis sifat-sifatnya. Hasil analisa Scanning Electron Microscopy (SEM) menunjukkan bahwa partikel hasil fotooksidasi berbentuk bulat dan memiliki diameter dengan kisaran 100-1000 nm. Hasil uji SEM diperkuat dengan hasil uji Dynamic Light Scattering (DLS) Zetasizer yang menunjukkan kurva distribusi normal ukuran partikel di kisaran 100-1000 nm. Proses fotooksidasi menyebabkan nano partikel pati yang dihasilkan mengandung gugus karbonil dan karboksil. Kandungan karboksil dan ukurannya yang nano meningkatkan kejernihan pasta dan kelarutan suspensi partikel, namun juga menurunkan viskositas suspensi partikel. Lebih lanjut nanopartikel pati yang dihasilkan mempunyai kemampuan untuk mengurangi tegangan antarmuka minyak dan air, sehingga berpotensi berperan sebagai emulsifier. Kesimpulannya, perlakukan H2O2 sebesar dan lama pemaparan UV-C pada proses fotooksidasi dapat menghasilkan nanopartikel pati dengan sifat-sifat yang diinginkan yaitu: ukuran nano terdistribusi normal, kejernihan pasta mendekati kejernihan air, dan gugus karboksil yang dihasilkan cukup untuk menurunkan tegangan muka minyak dan air.

Formation of Corn Starch Nanoparticles Involving H2O2 and UV-C lamp through Photo-oxidation in the Circulation System

Abstract

In this study, starch nanoparticles (SNPs) was prepared by a simple method, photooxidation in circulation system by involving H2O2 and UV-C lamp using variations in concentration and treatment duration. SNPs was ontained from the international market and analyzed its properties. SEM analysis revealed that the photo-oxidized particles showed round-like shape and diameter in the range of 100-1000 nm. This data were in line with DLS Zetasizer analysis which showed normal distribution of particle size curve in ranges 100-1000 nm. The photooxidation process resulted in the starch nano particle contained carbonyl and carboxyl groups. The carboxyls content and nano-size of the photo-oxidized particles contributed to high clear paste and high solubility, but low viscosity of the particle suspension. Moreover, the photo-oxidized starch nanoparticles be able to reduce interfacial tension between oil and water, so its possible played role as an emulsifier. As conclusion, treatment of H2O2 and UV-C exposure might resulted starch nanoparticle with properties: nano-size of the particle was in a normal distribution, paste clarity close to clarity of the water, and carboxyl groups attached in the particle was able to reduce interfacial tension water and oil. 

Fulltext View|Download
Keywords: nanoparticle; carboxyl; paste clarity; viscosity; interfacial tension; nanopartikel; karboksil; kejernihan pasta; viskositas; tegangan permukaan
Funding: Kementerian Riset, Teknologi, dan Pendidikan Tinggi, Department of Chemistry, School of Science, University of Melbourne ,

Article Metrics:

  1. Ali, A., Wani, T.A., Wani, I.A., Masoodi, F.A. 2016. Comparative study of the physico-chemical properties of rice and corn starches grown in Indian temperate climate. Journal of the Saudi Society of Agricultural Sciences 15:75-82. DOI: 10.1016/j.jssas.2014.04.002
  2. Amini, A.M., Razavi, S.M.A. 2016. A fast and efficient approach to prepare starch nanocrystals from normal corn starch. Food Hydrocolloids 57:132-138. DOI: 10.1016/j.foodhyd.2016.01.022
  3. Bel Haaj, S., Magnin, A., Pétrier, C., Boufi, S. 2013. Starch nanoparticles formation via high power ultrasonication. Carbohydrate Polymers 92:1625-1632. DOI: 10.1016/j.carbpol.2012.11.022
  4. Bertolini, A.C., Mestres, C., Colonna, P. 2000. Rheological properties of acidified and UV-irradiated starches. Starch-Stärke 52(10):340-344. DOI: 10.1002/1521-379x(200010)52:10
  5. Bertolini, A.C., Mestres, C., Colonna, P., Raffi, J. 2001. Free radical formation in UV- and gamma-irradiated cassava starch. Carbohydrate Polymers 44:269-271. DOI: 10.1016/S0144-8617(00)00268-X
  6. Cardwell, G., Bornman, J., James, A., Black, L. 2018. A review of mushrooms as a potential source of dietary vitamin d. Nutrients 10:1498. DOI: 10.3390/nu10101498
  7. Chan, H.T., Bhat, R., Karim, A.A. 2010. Effects of sodium dodecyl sulphate and sonication treatment on physicochemical properties of starch. Food Chemistry 120:703-709. DOI: 10.1016/j.foodchem.2009.10.066
  8. Chang, Y-G., Song, A-X., Gao, Y-G., Shi, Y-H., Lin, X-J., Cao, X-T., Lin, D-H., Hu, H-Y. 2006. Solution structure of the ubiquitin-associated domain of human BMSC-UbP and its complex with ubiquitin. Protein Science 15:1248–1259. DOI: 10.1110/ps.051995006
  9. Chen, L., Remondetto, G.E, Subirade, M. 2006. Food protein-based materials as nutraceutical delivery systems. Trends in Food Science and Technology 17:272-283. DOI: 10.1016/j.tifs.2005.12.011
  10. Corre-bordes, D.Le., Vahanian, E., Dufresne, A., Bras, J. 2012. Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules 13(1):132-137. DOI: 10.1021/bm201333k
  11. Corre-bordes, D.Le., Bras, J., Dufresne, A. 2010. Starch Nanoparticles: A Review. Biomacromolecules 11:1139-1153. DOI: 10.1021/bm901428y
  12. Demiate, I.M., Dupuy, N., Huvenne, J.P., Cereda, M.P., Wosiacki, G. 2000. Relationship between baking behavior of modified cassava starches and starch chemical structure determined by FTIR spectroscopy. Carbohydrate Polymers 42:149-158. DOI: 10.1016/S0144-8617(99)00152-6
  13. Dias, A.R.G., Zavarese, E.da.R., Helbig, E., Moura, F.A.de.M., Vargas, C.G., Ciacco, C.F. 2011. Oxidation of fermented cassava starch using hydrogen peroxide. Carbohydrate Polymers:185-191. DOI: 10.1016/J.CARBPOL.2011.04.026
  14. Dickinson, E. 2012. Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends in Food Science and Technology 24:4-12. DOI: 10.1016/j.tifs.2011.09.006
  15. Dufresne, A. 2014. Crystalline starch based nanoparticles. Current Opinion in Colloid and Interface Science 19:397-408. DOI: 10.1016/j.cocis.2014.06.001
  16. Dufresne, A., Cavaillé, J.-Y., Helbert, W. 1996. New nanocomposite materials: Microcrystalline starch reinforced thermoplastic. Macromolecules 29(23): 7624-7626. DOI: 10.1021/ma9602738
  17. Dura, A., Błaszczak, W., Rosell, C.M. 2014. Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Carbohydrate Polymers 101:837-845. DOI: 10.1016/j.carbpol.2013.10.013
  18. El-Sheikh, M.A., Ramadan, M.A., El-Shafie, A. 2010. Photo-oxidation of rice starch. Part I: Using hydrogen peroxide. Carbohydrate Polymers 80:266-269. DOI: 10.1016/j.carbpol.2009.11.023
  19. Fonseca, L.M., Gonçalves, J.R., El Halal, S.L.M., Pinto, V.Z., Dias, A.R.G., Jacques, A.C., Zavareze, E.da.R. 2014. Oxidation of potato starch with different sodium hypochlorite concentrations and its effect on biodegradable films. LWT - Food Science and Technology 60:714-720. DOI: 10.1016/j.lwt.2014.10.052
  20. García, N.L., Lamanna, M., D’Accorso, N., Dufresne, A., Aranguren, M., Goyanes, S. 2012. Biodegradable materials from grafting of modified PLA onto starch nanocrystals. Polymer Degradation and Stability 97:2021-2026. DOI: 10.1016/j.polymdegradstab.2012.03.032
  21. Harmon, R.E., Gupta, S.K., Johnson, J. 1972. Oxidation of starch by hydrogen peroxide in the presence of uv light-part II. Starch-Stärke 24(1): 8-11. DOI: 10.1002/star.19720240104
  22. Isbell, H.S., Frush, H.L. 1987. Mechanisms for hydroperoxide degradation of disaccharides and related compounds. Carbohydrate Research 161(2):181-193. DOI: 10.1016/s0008-6215(00)90076-4
  23. Ho, K.W., Ooi, C.W., Mwangi, W.W., Leong, W.F., Tey, T., Chan, E. 2016. Comparison of self-aggregated chitosan particles prepared with and without ultrasonication pretreatment as Pickering emulsifier. Food Hydrocolloids. DOI: 10.1016/j.foodhyd.2015.08.019
  24. Jafari, S.M., Assadpoor, E., Bhandari, B., He, Y. 2008. Nano-particle encapsulation of fish oil by spray drying. Food Research International 41:172-183. DOI: 10.1016/j.foodres.2007.11.002
  25. Kim, H.Y., Park, D.J., Kim, J.Y., Lim, S.T. 2013. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication. Carbohydrate Polymers 98:295-301. DOI: 10.1016/j.carbpol.2013.05.085
  26. Kuakpetoon, D., Wang, Y.J. 2006. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydrate Research 341:1896-1915. DOI: 10.1016/j.carres.2006.04.013
  27. Kuakpetoon, D., Wang, Y.J. 2008. Locations of hypochlorite oxidation in corn starches varying in amylose content. Carbohydrate Research 343:90-100. DOI: 10.1016/j.carres.2007.10.002
  28. Kumoro, A.C., Retnowati, D.S., Ratnawati, R., Budiyati, C.S. 2016. H2O2/UV photo-oxidation of gadung (Dioscorea hispida Dennst.) starch and its product physicochemical characterization. Oriental Journal of Chemistry 32:1993-1998. DOI: 10.13005/ojc/320425
  29. Lamanna, M., Morales, N.J., Garcia, N.L., Goyanes, S. 2013. Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler. Carbohydrate Polymers 97:90-97. DOI: 10.1016/j.carbpol.2013.04.081
  30. Lawal, O.S. 2004. Composition, physicochemical properties and retrogradation characteristics of native, oxidised, acetylated and acid-thinned new cocoyam (Xanthosoma sagittifolium) starch. Food Chemistry 87:205-218. DOI: 10.1016/j.foodchem.2003.11.013
  31. Liu, D., Wu, Q., Chen, H., Chang, P.R. 2009. Transitional properties of starch colloid with particle size reduction from micro to nanometer. Journal of Colloid and Interface Science 339:117-124. DOI: 10.1016/j.jcis.2009.07.035
  32. Liu, H., Yu, L., Xie, F., Chen, L. 2006. Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydrate Polymers 65:357-363. DOI: 10.1016/j.carbpol.2006.01.026
  33. Mcgrance, S.J., Cornell, H.J., Rix, C.J. 1998. Rapid calorimetry of amylose in starch-iodine method for the determination of amylose in starch products. Starch - Stärke 50(4):158-163. DOI: 10.1002/(sici)1521-379x(199804)50:4<158::aid-star158>3.0.co;2-7
  34. Saari, H., Heravifar, K., Rayner, M., Wahlgren, M., Sjöö, M. 2016. Preparation and characterization of starch particles for use in pickering emulsions. Cereal Chemistry Journal 93(2):116-124. DOI: 10.1094/cchem-05-15-0107-r
  35. Sánchez-Rivera, M.M., García-Suárez, F.J.L., Velázquez, D.V.M., Gutierrez-Meraz, F., Bello-Pérez, L.A. 2005. Partial characterization of banana starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers 62:50-56. DOI: 10.1016/j.carbpol.2005.07.005
  36. Sandhu, K.S., Kaur, M., Singh, N., Lim, S.T. 2008. A comparison of native and oxidized normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties. LWT - Food Science and Technology 41:1000-1010. DOI: 10.1016/j.lwt.2007.07.012
  37. Sangseethong, K., Lertphanich, S., Sriroth, K. 2009. Physicochemical properties of oxidized cassava starch prepared under various alkalinity levels. Starch/Staerke 61:92-100. DOI: 10.1002/star.200800048
  38. Sun, Q., Fan, H., Xiong, L. 2014. Preparation and characterization of starch nanoparticles through ultrasonic-assisted oxidation methods. Carbohydrate Polymers 106:359-364. DOI: 10.1016/j.carbpol.2014.02.067
  39. Tavares, A.C.K., Zanatta, E., Zavareze, E.da.R., Helbig, E., Dias, A.R.G. 2010. The effects of acid and oxidative modification on the expansion properties of rice flours with varying levels of amylose. LWT - Food Science and Technology 43:1213-1219. DOI: 10.1016/j.lwt.2010.04.007
  40. Wang, Y.J., Wang, L. 2003. Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohydrate Polymers 52:207-217. DOI: 10.1016/S0144-8617(02)00304-1
  41. Xiao, H.X., Lin, Q.L., Liu, G.Q., Yu, F.X. 2012. A comparative study of the characteristics of cross-linked, oxidized and dual-modified rice starches. Molecules 17:10946-10957. DOI: 10.3390/molecules170910946
  42. Ye, F., Miao, M., Jiang, B., Campanella, O.H., Jin, Z., Zhang, T. 2017. Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles. Food Chemistry 229:152-158. DOI: 10.1016/j.foodchem.2017.02.062
  43. Yousefhashemi, S.M., Khosravani, A., Yousefi, H. 2019. Isolation of lignocellulose nanofiber from recycled old corrugated container and its interaction with cationic starch–nanosilica combination to make paperboard. Cellulose 26:7207-7221. DOI: 10.1007/s10570-019-02562-2
  44. Zhou, F., Liu, Q., Zhang, H., Chen, Q., Kong, B. 2016. Potato starch oxidation induced by sodium hypochlorite and its effect on functional properties and digestibility. International Journal of Biological Macromolecules 84:410-417. DOI: 10.1016/j.ijbiomac.2015.12.050

Last update:

No citation recorded.

Last update:

No citation recorded.