Optimasi Ekstraksi Berbantu Gelombang Ultrasonik pada Biji Melinjo Kerikil (Gnetum gnemon L., ‘Kerikil’) Menggunakan Response Surface Methodology

*Bambang Kunarto -  Jurusan Teknologi Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Semarang, Semarang, Indonesia
Sutardi Sutardi -  Jurusan Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Yogyakarta, Indonesia
Supriyanto Supriyanto -  Jurusan Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Yogyakarta, Indonesia
Chairil Anwar -  Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Yogyakarta, Indonesia
Received: 13 Jun 2019; Revised: 10 Aug 2019; Accepted: 11 Aug 2019; Published: 12 Aug 2019; Available online: 12 Aug 2019.
Open Access Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Citation Format:
Article Info
Section: Artikel Penelitian (Research Article)
Language: ID
Full Text:
Statistics: 136 144
Abstract

Biji melinjo kerikil mengandung senyawa fenolik dan resveratrol sehingga berpotensi sebagai antioksidan, oleh karena itu perlu dilakukan ekstraksi. Metoda ekstraksi konvensional (maserasi, perebusan, refluxing) mempunyai kelemahan yaitu terjadinya kerusakan senyawa fenolik akibat reaksi oksidasi, hidrolisis dan ionisasi selama proses ekstraksi. Oleh karena itu, pada penelitian ini ekstraksi biji melinjo kerikil dilakukan menggunakan metode ekstraksi berbantu gelombang ultrasonik. Penelitian ini bertujuan untuk optimasi ekstraksi biji melinjo kerikil berbantu gelombang ultrasonik yang dilakukan pada berbagai waktu ekstraksi, suhu ekstraksi dan konsentrasi pelarut etanol. Surface response methodology digunakan untuk optimasi kondisi ekstraksi. Biji melinjo kerikil diekstrak menggunakan ultrasonic bath pada frekuensi 40 kHz dengan berbagai suhu (25, 30, 35, 40, 45oC), waktu ekstraksi (10, 20, 30, 40, 50 menit) dan konsentrasi pelarut etanol (40, 50, 60, 70 80%). Hasil penelitian menunjukkan bahwa kondisi optimum ekstraksi biji melinjo kerikil berbantu gelombang ultrasonik adalah pada suhu 30,18oC, waktu 33,01 menit dan konsentrasi pelarut etanol 71,04%. Pada kondisi ini, diperoleh yield ekstrak 18,41 ± 0,01%, total fenolik 11,26 ± 0,06 mg GAE/g, total flavonoid 533,70 ± 0,18 mg CE/100g, resveratrol 7,64 ± 0, 03%, IC50 sebesar 59,52 ± 0,04 ppm dan reducing power 76,31 ± 0,08%. Sebagai kesimpulan, optimasi ekstraksi biji melinjo kerikil berbantu gelombang ultrasonik menggunakan response surface methodology ini cukup baik karena nilai respon yang sebenarnya sesuai dengan nilai respon yang diprediksi.

Melinjo kerikil seeds contain phenolic and resveratrol compounds so that it has the potential as an antioxidant, therefore extraction needs to be done. Conventional extraction methods (maceration, boiling, refluxing) have the disadvantage of devasting phenolic compounds due to oxidation, hydrolysis and ionization reactions during the extraction process. Therefore, in this study the extraction of melinjo kerikil seeds done by using the ultrasonic-assisted extraction method. The study aims to optimize ultrasonic-assisted extraction of melinjo kerikil seeds that be done at various extraction times, extraction temperatures and ethanol solvents concentrations. Response surface methodology was used to optimize experimental condition for extraction. Melinjo kerikil seeds were extracted by using ultrasonic bath at a frequency of 40 kHz with various temperatures (25, 30, 35, 40, 45oC), extraction time (10, 20, 30, 40, 50 minutes) and ethanol solvents concentrations (40, 50, 60, 70 80 %). The results showed that the optimum conditions for ultrasonic-assisted extraction of melinjo kerikil seeds were at a temperature of 30.18oC, a time of 33.01 minutes and an ethanol solvent concentration of 71.04%. In this condition, obtained the extract yield 18.41 ± 0.01%, total phenolic 11.26 ± 0.06 mg GAE/g, total flavonoids 533.70 ± 0.18 mg CE/100g, resveratrol 7.64 ± 0,03%, IC50 in the amount of 59.52 ± 0.04 ppm and reducing power 76.31 ± 0.08%. As a conclusion, the optimization ultrasonic-assisted extraction of melinjo kerikil seeds by using response surface methodology is quite good because the actual response value is in accordance with the predicted response value.


Keywords
melinjo; ekstraksi; ultrasonik; resveratrol; antioksidan

Article Metrics:

  1. Agarwal, C., Máthé, K., Hofmann, T., Csóka, L. 2018. Ultrasound-assisted extraction of cannabinoids from Cannabis sativa L. optimized by response surface methodology. Journal of Food Science 83(3): 700-710. DOI: 10.1111/1750-3841.14075.
  2. Al-Juhaimi, F., Adiamo, O.Q., Ghafoor, K., Babiker, E.E. 2016. Optimization of ultrasonic-assisted extraction of phenolic compound from fenugreek (Trigonella foenum-graecum L.) seed. CyTA-Journal of Food 14(3): 369-374. DOI: 10.1080/19476337.2015.1110202.
  3. Bazykina, N.I., Nikolaevskii, A.N., Filippenko, T.A., Kaloerova, V.G. 2002. Optimization of conditions for the extraction of natural antioxidants from raw plant materials. Pharmaceutical Chemistry Journal 36(2): 46-49. DOI: 10.1023/A:1016024300843.
  4. Bas, D., Boyaci, I.H. 2007. Modelling and optimization I: Usability of response surface metodhology. Journal of Food Engineering 78: 836-845. DOI: 10.1016/j.jfoodeng.2005.11.024.
  5. Bastianetto, S., Ménard, C., Quirion, R. 2015. Neuroprotective action of resveratrol. Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease 1852(6): 1195-1201. DOI: 10.1016/j.bbadis.2014.09.011.
  6. Bilgin, M., Ahin, S. 2013. Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea europaea) leaves. Journal of the Taiwan Institute of Chemical Engineers, 44(1):8-12. DOI: 10.1016/j.jtice. 2012.08.008.
  7. Bhat, R., Yahya, B.N.2014. Evaluating melinjau (Gnetum gnemon L.) seed flour quality as a base for development of novel food products and food formulations. Food Chemistry 156: 42-49. DOI: 10.1016/j.foodchem. 2014.01.063.
  8. Chan, C.H., Yusoff, R., Ngoh, G.C. 2014. Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design 92(6): 1169-1186. DOI: 10.1016/j.cherd.2013.10.001.
  9. Chen, X. M., Tait, A.R., Kitts, D.D. 2017. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chemistry 218:15-21.DOI: 10.1016/j.foodchem.2016.09.016.
  10. Dewanto, V., Wu, X., Adom, K.K., Liu, R.H. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry 50(10): 3010-3014. DOI: 10.1021/j.f0115589.
  11. Feng, S., Luo, Z., Tao, B., Chen, C. 2015. Ultrasonic-assisted extraction and purification of phenolic compounds from sugarcane (Saccharum officinarum L.) rinds. LWT-Food Science and Technology 60(2): 970-976. DOI: 10.1016/j.lwt.2014.09.066.
  12. Francioso, P., Mastromarino, P., Masci, A., d’Erme, M., Mosca, L. 2014. Chemistry, Stability and Bioavailability of Resveratrol. Medicinal Chemistry 10:237-245. DOI: 10.2174/15734064113096660053.
  13. Hilbig, J., Alves, V.R., Muller, C.M.O., Micke, G.A., Vitali, L., Pedrosa, R.C., Block, J.M. 2018. Ultrasonic-assisted extraction combined with sample preparation and analysis using LC-ESI-MS/MS allowed the identification of 24 new phenolic compounds in pecan nut shell [Carya illinoinensis (Wangenh) C. Koch] extracts. Food Research International 106:549-557. DOI:10.1016/j.foodres. 2008.01.010.
  14. Hou, C., Humphreys, A.M., Thureborn, O., Rydin, C. 2015. New insights into the evolutionary history of Gnetum (Gnetales). Taxon 64(2): 239-253. DOI: 10.12705/642.12.
  15. Huang, W., Xue, A., Niu, H., Jia, Z., Wang, J. 2009. Optimised ultrasonic-assisted extraction of flavonoids from Folium eucommiae and evaluation of antioxidant activity in multi-test system in vitro. Food Chemistry 114(3): 1147-1154. DOI: 10.1016/j.foodchem.2008.10.079.
  16. Kato, E., Tokunaga, Y., Sakan, F. 2009. Stilbenoids isolated from the seeds of melinjo (Gnetum gnemon L.) and their biological activity. Journal of Agricultural and Food Chemistry 57(6): 2544-2549. DOI: 10.1021/jf803077p.
  17. Koddami, A., Wilkes, M., Roberts, T. 2013. Techniques for analysis of plant phenolic compounds. Molecules 18(2): 2328-2375. DOI: 10.3390/molecules 18022328.
  18. Le Man, H., Behera, S.K., Park, H.S. 2010. Optimization of operational parameters for ethanol production from Korean food waste leachate. International Journal of Environmental Science & Technology 7(1): 157-164. DOI: 10.1007/BF 03326127.
  19. Li, H.Z., Zhang, Z.J., Xue, J., Cui, L.X., LI, X.J., Chen, T. 2016. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants and rosmarinic acid from perilla leaves using response surface methodology. Food Science and Technology 36(4):686-693. DOI: 10.1590/1678-457x.13516.
  20. Liu, Y., Nan, L., Liu, J., Yan, H., Zhang, D., Han, X. 2016. Isolation and identification of resveratrol-producing endophytes from wine grape Cabernet Sauvignon. SpringerPlus 5(1): 1029. DOI: 10.1186/s40064-016-2571-0.
  21. Liu, Y., Luo, X., Lan, Z., Tang, J., Zhao, P., Kan, H. 2017. Ultrasonic-assisted extraction and antioxidant capacities of flavonoids from Camellia fascicularis leaves. CyTA-Journal of Food 16(1): 105-112. DOI: 10.1080/ 19476337.2017.1343867.
  22. Lu, J., Zhou, C., Rong, O., Xu, Y., Zhou, B., Li, Z., 2013. Optimization of microwave-assisted extraction of flavonoids from Cryptotaenia japonica hassk using response surface methodology. Advance Journal of Food Science and Technology 5: 310-317. DOI: 10.19026/ajfst.5.3262.
  23. Luo, X., Cui, J., Zhang, H., Duan, Y., Zhang, D., Cai, M., Chen, G., 2018. Ultrasound assisted extraction of polyphenolic compounds from red sorghum (Sorghum bicolor L.) bran and their biological activities and polyphenolic compositions. Industrial Crops and Products 112: 296-304. DOI: 10.1016/ j.indcrop.2017.12.019
  24. Odabas, H.I., Koca, I. 2016. Application of response surface methodology for optimizing the recovery of phenolic compounds from hazelnut skin using different extraction methods. Industrial Crops and Products 91:114-124. DOI: 10.1016/j.indcrop.2016.05.033.
  25. Ozsoy, N., Can, A., Yanardag, R., Akev, N. 2008. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chemistry 110(3): 571-583: DOI: 10.1016/j.foodchem. 2008.02.037.
  26. Piluzza, G., Bullitta, S. 2011. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharmaceutical Biology 49(3): 240-247. DOI: 10.3109/13880209.2010.501083
  27. Savić-Gajić, I., Savić, I.M., Nikolić, L.B., Popsavin, M.M., Rakić, S.J. 2017. The improvement of phtostability and antioxidant activity of trans-resveratrol by cyclodextrins. Advanced Technologies 6(2): 18-25. DOI: 10.5937/savteh1702018S.
  28. Sharma, A., Jain, R., Saiju, P., Jain, N., 2019. Skin whitening efficacy of Gnetum gnemon L. seed extract. Journal of Drug Delivery and Therapeutics 9(2): 227-230. DOI: 10.22270/jddt.v9i2-s.2497.
  29. Sulaiman, I.S.C., Basri, M., Masoumi, H.R.F., Chee, W.J., Ashari, S.E., Ismail, M. 2017. Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chemistry Central Journal 11(1):54. DOI: /10.1186/s13065-017-0285-1.
  30. Tabaraki, R., Nateghi, A. 2011. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology. Ultrasonics Sonochemistry 18(6): 1279-1286. DOI: 10.1016/ j.ultsonch.2011.05.004
  31. Tatefuji, T., Yanagihara, M., Fukushima, S. and Hashimoto, K. 2014. Safety assessment of melinjo (Gnetum gnemon L.) seed extract: acute and subchronic toxicity studies. Food and Chemical Toxicology 67: 230-235. DOI: 10.1016/j.fct.2014.02.030.
  32. Terpinc, P., Čeh, B., Ulrih, N.P., Abramovič, H. 2012. Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Industrial Crops and Products 39: 210-217. DOI: 10.1016/j.indcrop.2012.02.023
  33. Triputra, M.A., Yanuar, A. 2018. Analysis of Compounds Isolated from Gnetum gnemon L. Seeds as Potensial ACE Inhibitors through Molecular Docking and Molecular Dynamics Simulations. Journal of Young Pharmacists 10(2): S32-S39. DOI: 10.5530/jyp.2018.2s.7.
  34. Tsai, C.C., Chou, C.H., Liu, Y.C., Hsieh, C.W. 2014. Ultrasound-assisted extraction of phenolic compounds from Phyllanthus emblica L. and evaluation of antioksidant activities. International Journal of Cosmetic Science 36(5): 471-476. DOI: 10.1111/ics.12143.
  35. Wang, X., Wu, Q., Wu, Y., Chen, G., Yue, W., Liang, Q. 2012. Response surface optimized ultrasonic-assisted extraction of flavonoids from Sparganii rhizoma and evaluation of their in vitro antioxidant activities. Molecules 17(6): 6769-6783. DOI: 10.3390/molecules17066769.
  36. Wardhani, D.H., Sari, D.K., Prasetyaningrum, A. 2014. Ultrasonic-assisted extraction of antioxidant phenolic compounds from Euchema cottonii. Reaktor 14(4): 291-297. DOI: 10.14710/reaktor.14.4.291-297.
  37. Wazir, D., Ahmad, S., Muse, R., Mahmood, M., Shukor, M.Y. 2011. Antioxidant activities of different parts of Gnetum gnemon L. Journal of Plant Biochemistry and Biotechnology 20(2): 234. DOI: 10.1007/s13562-011-0051-8.
  38. Wen, C., Zhang, J., Zhang, H., Dzah, C.S., Zandile, M., Duan, Y., Ma, H., Luo, X. 2018. Advances in ultrasound assisted extraction of bioactive compounds from cash crops-A review. Ultrasonics Sonochemistry 48: 538-549. DOI: 10.1016/j.ultsonch. 2018.07.018.