JAFT • pISSN 2355-9152 • eISSN 2614-7076 • Member of CrossRef®
skip to main content

Improved Extrusion Cooking Technology (IECT): Utilization of Milder Conditions for Better Starch Modification

*José A. Téllez-Morales orcid  -  Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, Gustavo A. Madero, Mexico City, Mexico, Mexico
Jesús Rodríguez-Miranda orcid  -  Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México/Instituto Tecnológico de Tuxtepec, Tuxtepec, Oaxaca, Mexico, Mexico
Georgina Calderón-Domínguez orcid  -  Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, Gustavo A. Madero, Mexico City, Mexico, Mexico
Open Access Copyright 2025 Journal of Applied Food Technology

Citation Format:
Abstract

This review aimed to analyze improved extrusion cooking technology (IECT), a novel food processing methodology that uses milder conditions, longer screws, and an extended residence time to physically modify food ingredients, primarily starches and cereal flours. This process improves the ingredients' physicochemical, textural, and nutritional properties while minimizing the degradation of bioactive components. The review also explored the versatility of IECT for application to a wider range of raw materials, including tubers, legumes, fibers, and proteins. IECT modifies starch structure through low temperature and high-pressure gelatinization, destructing the granular and crystalline structure and increasing the gelatinization degree to above 60%. These changes reduce retrogradation and improve functional properties like the water absorption and solubility indices (WAI and WSI). While successful applications include the development of texturized rice and whole buckwheat noodles, research has focused largely on cereals and derivative starches. Future research must focus on applying IECT to tubers and legumes and materials rich in fiber and proteins, as well as conducting bioavailability studies of phenolics in vivo, and performing a comparative analysis against conventional single and twin-screw extruders.

Fulltext View|Download
Keywords: extrusion; extruded; IECT; technology

Article Metrics:

  1. Cheng, W., Gao, L., Wu, D., Gao, C., Meng, L., Feng, X., Tang, X. 2020. Effect of improved extrusion cooking technology on structure, physiochemical and nutritional characteristics of physically modified buckwheat flour: Its potential use as food ingredients. LWT - Food Science and Technology 133:109872. DOI: 10.1016/j.lwt.2020.109872
  2. Gao, L., Cheng, W., Fu, M., Wu, D., Tang, X. 2022. Effect of improved extrusion cooking technology modified buckwheat flour on whole buckwheat dough and noodle quality. Food Structure 31:100248. DOI: 10.1016/j.foostr.2021.100248
  3. Li, B., Zhang, Y., Xu, F., Khan, M.R., Zhang, Y., Huang, C., Liu, A. 2021. Supramolecular structure of Artocarpus heterophyllus Lam seed starch prepared by improved extrusion cooking technology and its relationship with in vitro digestibility. Food Chemistry 336:127716. DOI: 10.1016/j.foodchem.2020.127716
  4. Lin, J., Zhao, X., Sun, S., Zhang, Y., Xu, X., Liu, J. 2025. Construction of corn starch-palmitic acid-maltitol using improved extrusion cooking technology and investigating its retrogradation mechanism. Innovative Food Science & Emerging Technologies 104282. DOI: 10.1016/j.ifset.2025.104282
  5. Liu, C., Zhang, Y., Liu, W., Wan, J., Wang, W., Wu, L., Zhai, M., Yin, Z. 2011. Preparation, physicochemical and texture properties of texturized rice produce by improved extrusion cooking technology. Journal of Cereal Science 54:473-480. DOI: 10.1016/j.jcs.2011.09.001
  6. Liu, Y., Chen, J., Luo, S., Li, C., Ye, J., Liu, C., Gilbert, R.G. 2017. Physicochemical and structural properties of pregelatinized starch prepared by improved extrusion cooking technology. Carbohydrate Polymers 175:265-272. DOI: 10.1016/j.carbpol.2017.07.084
  7. Liu, Y., Chen, J., Wu, J., Luo, S., Chen, R., Liu, C., Gilbert, R.G. 2019. Modification of retrogradation property of rice starch by improved extrusion cooking technology. Carbohydrate Polymers 213:192-198. DOI: 10.1016/j.carbpol.2019.02.089
  8. Téllez-Morales, J.A., Rodríguez-Miranda, J. 2025. Improved extrusion cooking technology: A mini review of starch modification. Journal of Culinary Science & Technology 23(1):1-10. DOI: 10.1080/15428052.2022.2163952
  9. Téllez‐Morales, J.A., Gómez‐Aldapa, C.A., Herman‐Lara, E., Carmona‐García, R., Rodríguez‐Miranda, J. 2021. Effect of the concentrations of corn starch and whey protein isolate on the processing parameters and the physicochemical characteristics of the extrudates. Journal of Food Processing and Preservation 45(5):e15395. DOI: 10.1111/jfpp.15395
  10. Téllez-Morales, J.A., Herman-Lara, E., Gómez-Aldapa, C.A., Rodríguez-Miranda, J. 2020. Techno-functional properties of the starch-protein interaction during extrusion-cooking of a model system (corn starch and whey protein isolate). LWT - Food Science and Technology 132:109789. DOI: 10.1016/j.lwt.2020.109789
  11. Téllez-Morales, J.A., Hernandez-Santos, B., Gómez-Aldapa, C.A., Rodríguez-Miranda, J. 2022c. Impact of extrusion on swelling power and foam stability in mixtures of corn starch and whey protein isolate as a model system. Emirates Journal of Food and Agriculture 34(5):387-394
  12. Téllez‐Morales, J.A., Hernández‐Santos, B., Juárez‐Barrientos, J.M., Lerdo‐Reyes, A.A., Rodríguez‐Miranda, J. 2022b. The use of tubers in the development of extruded snacks: A review. Journal of Food Processing and Preservation 46(7):e16693. DOI: 10.1111/jfpp.16693
  13. Téllez-Morales, J.A., Hernández-Santos, B., Navarro-Cortez, R.O., Rodríguez-Miranda, J. 2022a. Impact of the addition of cricket flour (Sphenarium purpurascens) on the physicochemical properties, optimization and extrusion conditions of extruded nixtamalized corn flour. Applied Food Research 2(2):100149. DOI: 10.1016/j.afres.2022.100149
  14. Wang, N., Dai, J., Miao, D., Li, C., Yang, X., Shu, Q., Li, P., Xu, S. 2023b. Influence of enzymatic modification on the basis of improved extrusion cooking technology (IECT) on the structure and properties of corn starch. International Journal of Biological Macromolecules 253:127274. DOI: 10.1016/j.ijbiomac.2023.127274
  15. Wang, N., Li, C., Miao, D., Dai, Y., Zhang, H., Zhang, Y., Zhou, Y., Wang, B. 2023a. Effect of improved extrusion cooking technology (IECT) on structure, physical properties and in vitro digestibility of starch. International Journal of Biological Macromolecules 252:126436. DOI: 10.1016/j.ijbiomac.2023.126436
  16. Wang, N., Wang, X., Miao, J., Dai, J., Dai, Y., Wang, W., Xu, S., You, Z. 2025. Improved extrusion cooking technique (IECT) induces the formation of starch-lauric acid complexes: Evaluations of structure and properties. Journal of Future Foods 5:254-262. DOI: 10.1016/j.jfutfo.2025.07.016
  17. Ye, J., Hu, X., Zhang, F., Fang, C., Liu, C., Luo, S. 2016. Freeze-thaw stability of rice starch modified by improved extrusion cooking technology. Carbohydrate Polymers 151:113-118. DOI: 10.1016/j.carbpol.2016.05.026
  18. Zeng, Z., Liu, C., Luo, S., Chen, J., Gong, E. 2016. The profile and bioaccessibility of phenolic compounds in cereals influenced by improved extrusion cooking treatment. PLOS ONE 11:e0161086. DOI: 10.1371/journal.pone.0161086
  19. Zhang, Y., Liu, W., Liu, C., Luo, S., Li, T., Liu, Y., Wu, D., Zuo, Y. 2014. Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology. Food Chemistry 158:255-261. DOI: 10.1016/j.foodchem.2014.02.072
  20. Zhang, Y., Zhang, Y., Li, B., Wang, X., Xu, F., Zhu, K., Tan, L., Li, S. 2019. In vitro hydrolysis and estimated glycemic index of jackfruit seed starch prepared by improved extrusion cooking technology. International Journal of Biological Macromolecules 121:1109-1117. DOI: 10.1016/j.ijbiomac.2018.10.075
  21. Zhang, Y., Zuo, H., Xu, F., Zhu, K., Tan, L., Dong, W., Wu, G. 2021. The digestion mechanism of jackfruit seed starch using improved extrusion cooking technology. Food Hydrocolloids 110:106154. DOI: 10.1016/j.foodhyd.2020.106154

Last update:

No citation recorded.

Last update:

No citation recorded.