Sifat Fisik, Kimia, dan Sensori Mi Instant yang Terbuat dari Tepung Komposit Terigu dan Pati Kimpul Modifikasi

*I Nengah Kencana Putra  -  Program Studi Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Universitas Udayana, Denpasar, Indonesia
I Putu Suparthana scopus  -  Program Studi Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Universitas Udayana, Denpasar, Indonesia
Anak Agung Istri Sri Wiadnyani  -  Program Studi Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Universitas Udayana, Denpasar, Indonesia
Received: 19 Jun 2019; Revised: 20 Aug 2019; Accepted: 30 Nov 2019; Published: 30 Nov 2019.
Open Access Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Citation Format:
Article Info
Section: Artikel Penelitian (Research Article)
Language: ID
Full Text:
Statistics: 56 70

Abstract

Pati kimpul modifikasi (PKM) merupakan pati yang dibuat dari umbi kimpul yang diberikan perlakuan fisik atau kimia sehingga mempunyai sifat fungsional lebih baik dibandingkan dengan pati kimpul alami. Pada penelitian ini, dievaluasi pengaruh komposisi tepung komposit (terigu-PKM) terhadap sifat fisik, kimia, dan sensori mi instant. PKM dibuat menggunakan metode high moisture treatment (HMT), yaitu pemanasan pati pada suhu 110˚C pada kadar air 30% selama 10 jam. Tepung komposit dibuat dengan menggunakan berbagai perbandingan terigu dan PKM (90:10, 80:20, 70:30, 60:40, 50, dan 50). Selanjutnya, tepung komposit ini diolah menjadi mi instan, dan kemudian sifat fisik, kimia, dan sensori mi instan yang dihasilkan dievaluasi. Hasil penelitian menunjukkan perbandingan terigu dan PKM pada tepung komposit berpengaruh nyata terhadap kadar air, kadar protein, kadar karbohidrat, waktu pemasakan, kehilangan padatan akibat pemasakan (KPAP), dan daya serap air mi instan. Berdasarkan hasil uji sensori, tepung komposit terigu-PKM (80:20) menghasilkan mi instan terbaik. Komposisi zat gizi mi instan yang dihasilkan adalah: kadar air (2,74%), lemak (29,19%), protein (7,68%), dan karbohidrat (58,91%). Mi instan terigu-PKM (80:20) memiliki aroma lebih baik, waktu pemasakan lebih singkat, dan daya serap air lebih baik dibandingkan mi terigu 100%, namum memiliki KPAP lebih tinggi. Kesimpulannya, PKM dapat digunakan sebagai pensubstitusi sebagian terigu dalam pembuatan mi instant.


Physical, Chemical, and Sensory Properties of Instant Noodles Prepared from Wheat - Modified Tannia Starch Composite

Abstract

Modified tannia starch (MTS) is the starch made from tannia tuber, which is provided a physical or chemical treatment so that it has better functional properties compared to native tannia starch. In this study, the effect of the composition of the wheat flour-MTS composite on the physical, chemical, and sensory properties of instant noodles was evaluated. MTS was produced by using the high moisture treatment (HMT) method, which was heating the starch at the temperature of 110˚C and moisture content of 30% for 10 hours. The composite flour was made with various ratios of wheat flour and MTS (90:10, 80:20, 70:30, 60:40, 50, and 50). Subsequently, the composite flour was processed into instant noodles, and then the physical, chemical, and sensory properties of the noodles produced were evaluated. The results showed the ratio of wheat flour and MTS had a significant effect on the water content, protein content, carbohydrate content, cooking time, cooking loss, and water absorption capacity of the instant noodle. Based on the results of sensory evaluation, the composite of wheat flour-MTS (80:20) could produce the best instant noodles. The nutrition composition of the instant noodles produced, namely: water content (2.74%), fat content (29.19%), protein content (7.68%), and carbohydrate content (58.91%). If compared to the 100% wheat flour instant noodles, the wheat flour-MTS (80:20) instant noodles has a better aroma, better water absorption capacity, and shorter cooking time, but it has a higher cooking loss. In conclusion, MTS can be used as a partial substitute for flour in making instant noodles.

Keywords
kimpul; pati modifikasi; komposit; mi instan; tannia; modified starch; composite flour; instant noodles

Article Metrics:

  1. AACC. 2000. Approved methods of the Association of Cereal Chemist. 10th edition, American Association of Cereal Chemists, Saint Paul, Minnesota.
  2. Ackbarali, D.S., Maharaj, R. 2014. Sensory evaluation as a tool in determining acceptability of innovative products developed by undergraduate students in food science and technology at the University of Trinidad and Tobago. Journal of Curriculum and Teaching 3(1):10-27. DOI:10.5430/jct.v3n1p10.
  3. Adebowale, O.J., Salaam, H.A., Komolafe, O.M., Adebiyi, T.A., Ilesanmi I.O. 2017. Quality characteristics of noodles produced from wheat flour and modified starch of African breadfruit (Artocarpus altilis) blends. Journal of Culinary Science & Technology 15(1):75–88. DOI: 10.1080/15428052.2016.1204973.
  4. Agustia, F. C., Soebardjo, Y.P., Ramadhan, G.R. 2019. Development of mocaf-wheat noodle product with the addition of catfish and egg-white flours as an alternative for high-animal protein noodles. Jurnal Aplikasi Teknologi Pangan 8(2): 47-51. DOI: 10.17728/jatp.2714.
  5. Akinoso, R., Olatoye, K.K., Ogunyele, O.O. 2016. Potentials of trifoliate yam (Dioscorea dumetorum) in noodles production. Journal of Food Processing & Technology 7(8):1-6. DOI: 10.4172/2157-7110.1000609.
  6. Anggraeni, R., Saputra, D. 2018. Physicochemical characteristics and sensorial properties of dry noodle supplemented with unripe banana flour. Food Research 2(3):270-278. DOI: 10.26656/fr.2017.2(3).061.
  7. AOAC. 2005. Official Methods of Analysis of the Association of Official Analytical Chemists. 18th edition, AOAC, Maryland.
  8. APTINDO. 2018. Indonesia: Wheat Flour Industry Overview and Food Futures and Agrifood 2025+ Opportunities. http://aptindo.or.id/overview/ (Diakses tanggal 6 Desember 2018).
  9. Ashogbon, A.O. 2017. Evaluation of compositional and some physicochemical properties of bambara groundnut and cocoyam starch blends for potential industrial applications. American Journal of Food and Nutrition 5(2): 62-68 DOI:10.12691/ajfn-5-2-3.
  10. Bradbury, H.J., Holloway, W.D. 2000. Chemistry of Tropical Root Crops. Australian Centre for International Agriculture Research, Canberra.
  11. Chillo, S., Laverse, J., Falcone, P.M., Protopapa, A., Del Nobile, M.A. 2008. Influence of the addition of buckwheat flour and durum wheat bran on spaghetti quality. Journal of Cereal Science 47(2): 144–152. DOI: 10.1016/j.jcs.2007.03.004.
  12. Chompreeda, P., Resurreccion, A.V.A., Hung, Y.C., Beuchat, I.R. 1987. Quality evaluation of peanut-supplemented Chinese type noodles. Journal of Food Science 52:1740–1741. DOI:10.1111/j. 1365-2621.1987.tb05921.x.
  13. Corke, H., Bhattacharya, M. 1999. Wheat product: Noodles. Dalam Ang, C.Y., Liu, K., Huang, Y.W. (Eds.), Asian foods: Science and Technology 43–68.Technomic Publishing Co., Inc., Lancaster.
  14. Direktorat Gizi Departemen Kesehatan RI. 1996. Daftar Komposisi Bahan Makanan. Bhratara Karya Aksara, Jakarta.
  15. Fetriyuna, Marsetio, Pratiwi, R.L. 2016. Pengaruh lama modifikasi heat-moisture treatment (HMT) terhadap sifat fungsional dan sifat amilografi pati talas banten (Xanthosoma undipes K. Koch). Jurnal Penelitian Pangan 1(1): 44-50. DOI: 10.24198/jp2.2016.vol1.1.08.
  16. Ginting, E., Yulifianti, R. 2015. Characteristics of noodle prepared from orange-fleshed sweet potato and domestic wheat flour. Procedia Food Science 3: 289 – 302. DOI: 10.1016/j.profoo.2015.01.032.
  17. Glicksman, M. 1969. Gum Technology in the Food Industry. Academic Press, New York.
  18. Gulia N., Dhaka V., Khatkar B.S. 2014. Instant noodles: processing, quality, and nutritional aspects. Critical Reviews in Food Science and Nutrition 54:1386–1399. DOI: 10.1080/10408398.2011. 638227.
  19. Huang Y.C., Lai, H.H. 2010. Noodle quality affected by different cereal starches. Journal of Food Engineering 97: 135-143. DOI: 10.1016/j. jfoodeng.2009.10.002.
  20. Kang, J., Lee, J., Choi, M., Jin, Y., Chang, D., Chang, Y.H., Kim, M., Jeong, Y., Lee, Y. 2017. Physicochemical and textural properties of noodles prepared from different potato varieties. Prev Nutr Food Science 22(3):246–250. DOI: 10.3746/pnf.2017.22.3.246.
  21. Kusumo, Surahmat, Hasanah, M., Moeljopawiro, S., Thohari, M., Subandriyo, Hardjamulia, A., Nurhadi A., Kasim, H. 2002. Panduan karakterisasi dan evaluasi plasma nutfah talas. Departemen Pertanian Republik Indonesia.
  22. Levent, H. 2017. Effect of partial substitution of gluten-free flour mixtures with chia (Salvia hispanica L.) flour on quality of gluten-free noodles. Journal of Food Science Technology 54(7):1971–1978. DOI: 10.1007/s13197-017-2633-5.
  23. Moorthy, S.N., Sajeev, M.S. Anish, R.J. 2018. Functionality of tuber starches. Dalam Sjoo, M., Nilsson, L. (Eds.). Starch in food: structure, function and applications 421–508. Woodhead Publishing, Duxford.
  24. Nagao, S. 1996. Processing technology of noodle products in Japan. Dalam Kruger, J. E., Matsou, R. B., Dick J.W. (Eds.). Pasta and noodle technology 189–199. AACC, Saint Paul, Minnesota.
  25. Oladunmoye, O.O., Aworh, O.C., Maziya‐Dixon, B., Erukainure, O.L., Elemo, G.N. 2014. Chemical and functional properties of cassava starch, durum wheat semolina flour, and their blends. Food science and nutrition 2(2):132-138. DOI: 10.1002/fsn3.83.
  26. Omeire, G.C., Kabuo, N.O., Nwosu, J.N. PeterIkechukwu, A., Nwosu, M.O. 2015. Enrichment of wheat/cassava noodles with partially defatted protein-rich flour. Journal of Environmental Science, Toxicology and Food Technology 9(5):121-125. DOI:10.9790/2402-0951121125.
  27. Onwueme, I.C. 1978. The tropical tuber crops: Yams, cassava, sweet potato, and cocoyams. John Wiley & Sons, Chichester.
  28. Ovando-Martinez, M., Sáyago-Ayerdi, S., Agama-Acevedo, E., Goñi, I., Bello-Pérez, L.A. 2009. Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta. Food Chemistry 113(1):121–126. DOI: 10.1016/j. foodchem.2008.07.035.
  29. Putra, I.N.K., Wisaniyasa, N.W, Wiadnyani, A.A.I.S. 2016. Optimisasi suhu pemanasan dan kadar air pada produksi pati talas kimpul modifikasi dengan teknik heat moisture treatment (HMT). Agritech 36(3): 302-307. DOI: 10.22146/agritech.16602.
  30. Rokey, G.J. 2012. Troubleshooting. Dalam Maskan, M., Altan A. (Eds.). Advance in food extrusion technology 355-381. CRC Press, New York.
  31. Sirichokworrakita, S., Phetkhuta, J., Khommoona, A. 2015. Effect of partial substitution of wheat flour with riceberry flour on quality of noodles. Procedia Social and Behavioral Sciences 197:1006 – 1012. DOI: 10.1016/j.sbspro.2015.07.294.
  32. Steel, R.G.D., Torrie, J.H., Dicky, D.A. 1997. Principles and procedures of statistics: A biometrical approach. Third edition, McGraw Hill Book Co. Inc., New York.
  33. Subroto, E., Indiarto, R., Marta, H., Shalihah, S. 2019. Effect of heat-moisture treatment on functional and pasting properties of potato (Solanum tuberosum L. var. Granola) starch. Food Research 3(5):469-476. DOI:10.26656/fr.2017.3(5).110.
  34. Sui, Z., Lucas, P.W., Corke, H. 2006. Optimal cooking time of noodles related to their notch sensitivity. Journal of Texture Studies 37: 428–441. DOI:10.1111/j.1745-4603.2006.00061.x.
  35. Sutomo, B. 2008. Variasi Mi dan Pasta. PT Kawan Pustaka, Jakarta.
  36. Tijani, A.O., Oke, E.K., Bakare, H.A., Tayo, T.R. 2017. Quality evaluation of instant noodles produced from composite breadfruit flour. Researcher 9(1):21-26. DOI:10.7537/marsrsj090117.03.
  37. Vignaux, N., Doehlert, D.C, Elias, E.M., Mcmullen, M., Grant L.A., Kianian S.F. 2005. Quality of spaghetti made from full and partial waxy durum wheat. Cereal Chemistry 82: 93–100. DOI: 10.1094/CC-82-0093.
  38. Watts, B.M., Ylimaki, G.L., Jeffery, L.E., Alias, L.G. 1989. Basic sensory methods for food evaluation. The International Development Research Centre, Ottawa.
  39. WINA. 2019. Global demand for instant noodles. World Instant Noodles Association. https:// instantnoodles.org/en/noodles/market.html (diakses 9 Juni 2019)
  40. Yadav, B., Yadav, R., Kumari, M., Khatkar, B. 2014. Studies on suitability of wheat flour blends with sweet potato, colocasia and water chestnut flours for noodle making. Food Science and Technology 57: 352-358. DOI:10.1016/j.lwt.2013.12.042.
  41. Zhang, W., Sun, C., He, F., Tian, J. 2010. Textural characteristics and sensory evaluation of cooked dry chinese noodles based on wheat-sweet potato composite flour. International Journal of Food Properties 13: 294–307. DOI: 10.1080/ 10942910802338194.