JAFT • pISSN 2355-9152 • eISSN 2614-7076 • Member of CrossRef®
skip to main content

Influence of Enzyme Concentration, Hydrolysis Duration, and Drying Temperature on the Production of Antioxidant-containing Peptide from Catfish (Clarias sp.) Gills

*Masagus Muhammad Prima Putra orcid scopus  -  Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora Gedung A4, Bulaksumur Yogyakarta, Indonesia 55281, Indonesia
Winnen Wisnumurti scopus  -  Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Indonesia
Nezar Helmi Athallah scopus  -  Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Indonesia
Al Tarich Arasy Zaen scopus  -  Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Indonesia
Aulia Rachma Sahura scopus  -  Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Indonesia
Ustadi Ustadi scopus  -  Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Indonesia
Open Access Copyright 2025 Journal of Applied Food Technology

Citation Format:
Abstract

Catfish gills are a potential raw material for producing protein hydrolysate with antioxidant activity. Protein hydrolysate was produced using crude papain enzyme in two stages. The first stage was to obtain the optimum enzyme concentration (w/w) including 1%, 2%, 3%, 4%, 5% and 6%, with 0% as a control, followed by the second stage to obtain the optimum hydrolysis duration for 24, 48, 72, and 96 hours, with 0 hour as a control. The supernatant containing protein hydrolysate was then dried using an oven at various temperatures, including 60, 70, and 80°C, for 48 hours to obtain catfish gill protein hydrolysate (CGH) powder. CGH was tested for degree of hydrolysis (DH) and antioxidants, including DPPH and ABTS. The highest antioxidant activity was obtained from 3% papain with DPPH and ABTS values of 85% and 9.57 µM TEAC, respectively. Further stage on the hydrolysis duration gave 48 hours as the optimal one, with antioxidant activity of 85.25 % for DPPH and 4.29 µM TEAC for ABTS. The oven-drying temperature concluded that CGH has stable antioxidant activity. The IC50 on antioxidant activity based on DPPH ranged from 1799.85 mg/L to 1749.50 mg/L (IC50 of ascorbic acid was 2.61 mg/L) and was included as very weak. Even though based on IC50, CGH has low antioxidant activity, the protein content was found to be high (56.86±1.51%), which could be a high-protein food additive.

Fulltext View|Download
Keywords: by-products; peptide; antioxidant; hydrolysis; papain

Article Metrics:

  1. Abraha, B., A. Mahmud, M. Samuel, W. Yhdego, S. Kibrom, & W. Habtom. 2017. Production of Fish Protein Hydrolysate from Silver Catfish (Arius thalassinus). MOJ Food Processing & Technology. 5(4): 328-335. https://doi.org/10.15406/mojfpt.2017.05.00132
  2. Agency for Regional Development Yogyakarta Special Province. 2020. Data Dasar Perikanan Budidaya Yogyakarta. http://bappeda.jogjaprov.go.id/dataku/data_dasar/index
  3. Annisa, S., Y. S. Darmanto & U. Amalia. 2017. Pengaruh perbedaan spesies ikan terhadap hidrolisat protein ikan dengan penambahan enzim papain. Saintek perikanan: Indonesian Journal of Fisheries Science and Technology. 13(1): 24-30. https://doi.org/10.14710/ijfst.13.1.24-30
  4. Barzana E, & G. N. Gracia. 1994. Production of fish protein concentrate. Martin, A.M. (ed) Fisheries Processing Biotechnology Application. London (UK): Chapman & Hall (207-222)
  5. Benzie, I. F. & J. J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 239 (1): 70-76. https://doi.org/10.1006/abio.1996.0292
  6. Chalamaiah M, Yu W., and Wu J. 2018. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem. 245: 205-222. https://doi.org/10.1016/j.foodchem.2017.10.087
  7. Darmawan, E. 2020. Pengaruh Konsentrasi Enzim Bromelin Terhadap Sifat Kimia dan Organoleptik Hidrolisat Protein dari Ikan Lele Ikan Dumbo (Clarias gariepinus). Agrotech: Jurnal Ilmiah Teknologi Pertanian. 4 (1): 1-8. https://doi.org/10.37631/agrotech.v3i1.172
  8. Dong, Y., G. Sheng, J. Fu, & K. Wen. 2005. Chemical Characterization and Anti-anaemia Activity of Fish Protein Hydrolysate from Saurida elongata. Journal of the Science of Food and Agriculture. 85: 2033-2039. https://doi.org/10.1002/jsfa.2219
  9. Elavarasan, K. & B. A. Shamasundar. 2016. Effect of Oven drying and Freeze drying on The Antioxidant and Functional Properties of Protein Hydrolysates Derived from Freshwater Fish (Cirrhinus mrigala) Using Papain Enzyme. Journal of Food Science and Technology. 53: 1.303-1.311. https://doi.org/10.1007%2Fs13197-015-2084-9
  10. Guo, Y., Michael, N., Fonseca Madrigal, J., Sosa Aguirre, C., & Jauregi, P. 2019. Protein hydrolysate from Pterygoplichthys disjunctivus, armoured catfish, with high antioxidant activity. Molecules, 24(8), 1628. https://doi.org/10.3390/molecules24081628
  11. Hoyle, N. T., & J. H. Merritt. 1994. Quality Of Fish Protein Hydrolysates from Herring (Clupea harengus). Journal of food Science. 59(1): 76-79. https://doi.org/10.1111/j.1365-2621.1994.tb06901.x
  12. Ilham D., Dewita dan Karnila. 2019. Karakteristik hidrolisat protein ikan malong (Congresox talabon) yang dihidrolisis dengan menggunakan enzim papain. Berkala Perikanan Terubuk. 47(2):186
  13. Luo, H. Y., B. Wang, Z. R. Li, C. F. Chi, Q. H. Zhang, & G. Y. He. 2012. Preparation and Evaluation of Antioxidant Peptide from Papain Hydrolysate of Sphyrna lewini Muscle Protein. Food Science Technology. 51: 281-288. https://doi.org/10.1016/j.lwt.2012.10.008
  14. Klompong, V., S. Benjakul, D. Kantachote, K. D. Hayes, & F. Shahidi. 2008. Comparative Study on Antioxidative Activity of Yellow Stripe Trevally Protein Hydrolysate Produced from Alcalase and Flavourzyme. Int J Food Sci Technol. 43: 1019–1026. https://doi.org/10.1111/j.1365-2621.2007.01555.x
  15. Mizushige, T., M. Komkiya, M. Onda, K. Uchida, K. Hayamizu, Y. Kabuyama. 2017. Fish protein hydrolysate exhibits anti-obesity activity and reduces hypothalamic neuropeptide Y and agouti-related protein mRNA expressions in rats. Biomedical Research 38(6): 351-357. https://doi.org/10.2220/biomedres.38.351
  16. Mubarokah, U., A. Kriswantriyono, H. Horiq & R. Syarif. 2021. Inovasi Olahan Tulang dan Kepala Ikan Lele sebagai Upaya Pemberdayaan Masyarakat dalam Pengelolaan Limbah Ikan Lele Berbasis Zero Waste. Jurnal Resolusi Konflik, CSR dan Pemberdayaan. 6 (1): 49-62
  17. Najafian L, & Babji. 2015. Isolation, purification and identification of three novel antioxidative peptides from patin (Pangasius sutchi) myofibrillar protein hydrolysates. LWT - Food Sci Technol. 60 (1): 452-46. https://doi.org/10.1016/j.lwt.2014.07.046
  18. Nalinanon, S., S. Benjakul, H. Kishimura, & F. Shahidi. 2011. Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chem. 124 (4): 1354-1362. https://doi.org/10.1016/j.foodchem.2010.07.089
  19. Nurdiani, R., M. Ramadhan, A. A. Prihanto & M. Firdaus. 2022. Characteristics of fish protein hydrolysate from mackerel (Scomber japonicus) by-products. Journal of Hunan University Natural Sciences. 49 (1): 75-83. https://doi.org/10.55463/issn.1674-2974.49.1.10
  20. Nurhayati, T., Nurjanah & C. N. Sanapi. 2013. Karakterisasi Protein hidrolisat Ikan Lele Dumbo (Clarias gariepinus). Jurnal Pengolahan Hasil Perikanan Indonesia. 16(3): 207-214. https://doi.org/10.17844/jphpi.v16i3.8058
  21. Nurjanah, T. Nurhayati, A. Latifah, & T. Hidayat. 2021. Aktivitas Antioksidan dan Komponen Bioaktif Hidrolisat Protein Jeroan Ikan Kakap Putih (Lates calcalifer). Warta IHP. 38 (1): 70-78
  22. Puspawati N.M., Dewi P.P., Bogoriani N.W., & Ariati N.K. 2020. Produksi Hidrolisat Protein Antioksidan Melalui Hidrolisis Enzimatik Protein Kulit Ayam Broiler Dengan Enzim Papain. Journal of Chemistry 14(2): 206-212. https://doi.org/10.24843/JCHEM.2020.v14.i02.p16
  23. Prastika, H. H., K. Ratnayani, N. M. Puspawati & A. A. I. A. M. Laksmiwati. 2019. Penggunaan enzim pepsin untuk produksi hidrolisat protein kacang gude (Cajanus cajan (l.) Millsp.) yang aktif antioksidan. Cakra Kimia (Indonesian E-Journal of Applied Chemistry). 7(2): 180-188. https://doi.org/10.24843/CK.2019.v07.i02
  24. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26 (9–10): 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  25. Rimalia, A. 2002. Pengaruh Limbah Ikan Terhadap Pertumbuhan, Kualitas Darah dan Kandungan Protein Ikan Patin (Pangasius hypothalamus HB). UGM Press. Yogyakarta
  26. Rocha, M. D., A. Alemán, G. C. Baccan, M. E. López-Caballero, C. Gómez-Guillén, P. Montero & C. Prentice. 2018. Anti-Inflammatory, Antioxidant, and Antimicrobial Effects of Underutilized Fish Protein Hydrolysate. Journal of Aquatic Food Product Technology, 27:5, 592-608. https://doi.org/10.1080/10498850.2018.1461160
  27. Salamah, E., T. Nurhayati, I. R. Widadi. 2012. Pembuatan dan karakterisasi hidrolisat protein dari ikan lele dumbo (Clarias gariepinus) menggunakan enzim papain. Jurnal Pengolahan Hasil Perikanan Indonesia. 15 (1): 9-16
  28. Samaranayaka, A.G.P. & Li-Chan, E.C.Y. 2011. Food-Derived Peptidic Antioxidants: A Review of Their Production, Assessment, and Potential Applications. Journal of Functional Foods, 3, 229-254. https://doi.org/10.1016/j.jff.2011.05.006
  29. Sampath, K.N.S., Nazeer, R.A. & Jaiganesh, R. 2011. Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides 32(7): 1496–1501. https://doi.org/10.1016/j.peptides.2011.05.020
  30. Sarmadi, B. H. & A. Ismail. 2010. Antioxidative peptides from food proteins: a review. Peptides 31(10): 1949-1956. https://doi.org/10.1016/j.peptides.2010.06.020
  31. Shahi, Z., S. Z. Sayyed-Alangi, & L. Najafian. 2020. Effects of enzyme type and process time on hydrolysis degree, electrophoresis bands and antioxidant properties of hydrolyzed proteins derived from defatted Bunium persicum Bioss. press cake. Heliyon, 6 (2): 1-10. https://doi.org/10.1016/j.heliyon.2020.e03365
  32. Shrestha M. K. & J. Pant. 2012. Small-scale aquaculture for rural livelihoods: Proceedings of the Symposium on Small-scale aquaculture for increasing resilience of Rural Livelihoods in Nepal. 5-6 Feb 2009. Kathmandu, Nepal, WorldFish
  33. Sukkhown, P., K. Jangchud, Y. Lorjaroenphon, & T. Pirak. 2018. Flavoured-Functional Protein Hydrolysates from Enzymatic Hydrolysis of Dried Squid By-Products: Effect of Drying Method. Food Hydrocolloids. 76: 103-112. https://doi.org/10.1016/j.foodhyd.2017.01.026
  34. Susanto E., Djalal R., & Lilik E.R. 2018. Optimasi Aktivitas Antioksidan Peptida Aktif Dari Ceker Ayam Melalui Hidrolisis Enzim Papain. Jurnal Ilmu dan Teknologi Hasil Ternak. 13(1): 14-26. https://doi.org/10.21776/ub.jitek.2018.013.01.2
  35. Witono, Y., Aulanni’am, A. Subagio & S. B. Widjanarko. 2007. Preliminary Study for Enzymatic Processung of Milkfish Hydrolysate by Using “Biduri” Protease. Prosiding Seminar Nasional Perhimpunan Ahli Teknologi Pangan Indonsesia (PATPI), Bandung 17-18 Juli 2007
  36. Witono Y., M. Maryanto, I. Taruna, A. D. Masahid & K. Cahyaningati. 2020. Aktivitas antioksidan hidrolisat protein ikan wader (Rasbora jacobsoni) dari hidrolisis oleh enzim calotropin dan papain. Jurnal Agroteknologi. 14(01): 44-57. https://doi.org/10.19184/j-agt.v14i01.14817
  37. Wu, H., H. M. Chen, & C. Y. Shiau. 2003. Free Amino Acids and Peptides as Related to Antioxidant Properties in Protein Hydrolysates of Mackerel (Scomber austriasicus). Food Research. 36: 949-957. https://doi.org/10.1016/S0963-9969(03)00104-2
  38. Yathisha, U. G., I. Bhat, I. Karunasagar, & Mamatha, B. S. 2019. Antihypertensive activity of fish protein hydrolysates and its peptides. Crit Rev Food Sci Nutr. 59 (15): 2363-2374. https://doi.org/10.1080/10408398.2018.1452182

Last update:

No citation recorded.

Last update:

No citation recorded.