skip to main content

Formasi Sabu Sebagai Endapan Kolisi Busur Gunungapi Woyla dengan Lempeng Sumatra Barat

1Institut Teknologi Sumatera, Indonesia

2Pusat Survei Geologi, Badan Geologi, Indonesia

Received: 1 Jan 2022; Revised: 2 Sep 2022; Accepted: 2 Sep 2022; Available online: 1 Nov 2022; Published: 1 Nov 2022.
Open Access Copyright (c) 2022 Penulis yang diterbitkan Jurnal Geosains dan Teknologi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract
Geologi wilayah Lampung relatif masih memiliki referensi yang rendah khususnya tentang formasi batuan sedimen. Salah satu formasi batuan sedimen di Lampung adalah Formasi Sabu yangtersusun atas konglomerat aneka bahan, batupasir, dan batulempung berumur Paleosen hingga Oligosen yang belum diteliti karakteristik batuan asalnya.Penelitian ini bertujuan untuk mengetahui variasi jenis provinsi tektonik sedimen Formasi Sabu menggunakan metode modal komposisidengan metode perhitungan poin counting terhadap dua belas sampel sayatan tipis yang diambil dari hasil pengukuran penampang stratigrafi setebal 47 m. Formasi Sabu pada lokasi penelitian dapat dibagi menjadi tiga segmen, segmen bawah memiliki provenan dari provinsi tektonik recycled orogen, segmen tengah memiliki provinsi tektonik dissected arc hingga basement uplift, segmen atas memiliki provenan dari dissected arc yang berupa plutonic magmatic arc. Variasi provinsi tektonik ini disebabkan akibatkondisi sumber sedimen berasal dari pegunungan hasil tabrakan antara busur gunungapi Woyla dan terrane Sumatra Barat yang menjadi sumber sedimen provinsi tektonik recycled orogen dan magmatic arc. Tabrakan busur gunungapi Woyla dan terrane Sumatra Barat secara diakronus ditafsirkan memicu terbentuknya sesar mendatar besar yang memicu tersingkapnya batuan alas berupa pluton granit yang menjadi sumber provinsi basement uplift hingga plutonic magmatic arc. Formasi Sabu diintepretasikan terendapkan pada cekungan pull apart yang terbentuk dari sistem sesar mendatar yang terbentuk pada umur Paleogen.
Fulltext View|Download
Keywords: Provenan; Formasi Sabu; Sutur Busur Woyla-Sumatra Barat; Lampung
Funding: Institut Teknologi Sumatra

Article Metrics:

  1. Advokaat, E. L., Bongers, M. L., Rudyawan, A., BouDagher-Fadel, M. K., Langereis, C. G., dan van Hinsbergen, D. J., 2018. Early Cretaceous origin of the Woyla arc (Sumatra, Indonesia) on the Australian plate. Earth and Planetary Science Letters, 498, 348-361. DOI: https://doi.org/10.1016/j.epsl.2018.07.001
  2. Audley-Charles, M. G., 2011. Tectonic post-collision processes in Timor. Geological Society, London, Special Publications, 355(1), 241-266. DOI: 10.1144/SP355.12
  3. Barber, A. J., 2000. The origin of the Woyla Terranes in Sumatra and the Late Mesozoic evolution of the Sundaland margin. Journal of Asian Earth Sciences, 18(6), 713-738. DOI: https://doi.org/10.1016/S1367-9120(00)00024-9
  4. Barber, A. J. dan Crow, M. J., 2003. An evaluation of plate tectonic models for the development of Sumatra. Gondwana Research, 6(1), 1-28. DOI: https://doi.org/10.1016/S1342-937X(05)70642-0
  5. Barber, A.J., Crow, M. J. dan Milsom, J. S., 2005. Introduction and previous research. In A.J. Barber, M.J. Crow, dan J.S. Milsom (Ed.). Sumatera: Geology, Resources and Tectonic Evolution. Geological Society Memoirs, 31, 1-6. London: The Geological Society. DOI: https://doi.org/10.1144/GSL.MEM.2005.031.01.01
  6. Barber, A.J., dan Crow, M.J., 2009. Structure of Sumatra and its implications for the tectonic assembly of Southeast Asia and the destruction of Paleotethys. Island Arc, 18(1), 3-20. DOI: https://doi.org/10.1111/j.1440-1738.2008.00631.x
  7. Bellon, H., Maury, R.C., Soeria-Atmadja, R., Cotten, J., dan Polvé, M., 2004. 65 m.y.-long magmatic activity in Sumatra (Indonesia), from Paleocene to Present. Bulletin de la Société géologique de France, 175(1), 61-72. DOI: https://doi.org/10.2113/175.1.61
  8. Crow, M.J., 2005. Pre-Tetiary volcanic rocks. In A.J. Barber, M.J. Crow, dan J.S. Milsom (Ed.). Sumatera: Geology, Resources and Tectonic Evolution. Geological Society Memoirs, 31, 63-68. London: The Geological Society. DOI: https://doi.org/10.1144/GSL.MEM.2005.031.01.06
  9. de Smet, M.E.M., dan Barber, A.J., 2005. Tertiary stratigraphy. In A.J. Barber, M.J. Crow, dan J.S. Milsom (Ed.). Sumatera: Geology, Resources and Tectonic Evolution. Geological Society Memoirs, 31, 86-97. London: The Geological Society. DOI: https://doi.org/10.1144/GSL.MEM.2005.031.01.07
  10. Dickinson, W.R., dan Suczek, C. A., 1979. Plate tectonics and sandstone compositions. AAPG Bulletin, 63(12), 2164-2182
  11. Dickinson, W.R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A., dan Ryberg, P. T., 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94(2), 222-235. DOI: https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2
  12. Dickinson, W.R., 1985. Interpreting provenance relations from detrital modes of sandstones. In G.G. Zuffa (Ed.). Provenance of Arenites (333-361). Dordrecht: Springer. DOI: https://doi.org/10.1007/978-94-017-2809-6_15
  13. Fernandez-Blanco, D., Philippon, M., dan von Hagke, C., 2016. Structure and kinematics of the Sumatran fault system in North Sumatra (Indonesia). Tectonophysics, 693, 453-464. DOI: https://doi.org/10.1016/j.tecto.2016.04.050
  14. Folk, R.L., 1968, Bimodal supermature sandstones. Product of the desert floor. Proceedings 23rd International Gondwana Congress, 8, 9–32
  15. Hall, R., 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570, 1-41. DOI: https://doi.org/10.1016/j.tecto.2012.04.021
  16. Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4), 353-431. DOI: https://doi.org/10.1016/S1367-9120(01)00069-4
  17. Hamilton, W.B., 1979. Tectonics of the Indonesian region (Vol. 1078). US Government Printing Office. DOI:
  18. https://doi.org/10.3133/pp1078
  19. Harris, R., 2006. Rise and fall of the Eastern Great Indonesian arc recorded by the assembly, dispersion and accretion of the Banda Terrane, Timor. Gondwana Research, 10(3-4), 207-231. DOI: https://doi.org/10.1016/j.gr.2006.05.010
  20. Hennig, J., Hall, R., Forster, M.A., Kohn, B.P., dan Lister, G. S., 2017. Rapid cooling and exhumation as a consequence of extension and crustal thinning: Inferences from the Late Miocene to Pliocene Palu Metamorphic Complex, Sulawesi, Indonesia. Tectonophysics, 712-713(21), 600-622. DOI: https://doi.org/10.1016/j.tecto.2017.06.025
  21. Ingersoll, R.V., dan Suczek, C.A., 1979. Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218. Journal of Sedimentary Research, 49(4), 1217-1228. DOI: https://doi.org/10.1306/212F78F1-2B24-11D7-8648000102C1865D
  22. Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D., dan Sares, S.W., 1984. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Research, 54(1), 103-116. DOI: https://doi.org/10.1306/212F83B9-2B24-11D7-8648000102C1865D
  23. Mangga, A., Amiruddin, Suwarti, T., Gafoer, S., dan Sidarto, 1994. Peta Geologi Lembar Tanjungkarang skala 1:250.000. Pusat Penelitian dan Pengembangan Geologi, Bandung
  24. McCourt, W. J., Crow, M. J., Cobbing, E. J., dan Amin, T. C., 1996. Mesozoic and Cenozoic plutonic evolution of SE Asia: evidence from Sumatra, Indonesia. Geological Society, London, Special Publications, 106(1), 321-335. DOI: https://doi.org/10.1144/GSL.SP.1996.106.01.21
  25. Metcalfe, I., 1996. Pre-Cretaceous evolution of SE Asian terranes. Geological Society, London, Special Publications, 106(1), 97-122. DOI: 10.1144/GSL.SP.1996.106.01.09
  26. Metcalfe, I., 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66, 1-33. DOI: https://doi.org/10.1016/j.jseaes.2012.12.020
  27. Milsom, J. dan Walker, A., 2005. The gravity field. Geological Society, London, Memoirs, 31(1), 16-23
  28. Nugraha, A.M.S. dan Hall, R., 2018. Late Cenozoic palaeogeography of Sulawesi, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 191-209. DOI: https://doi.org/10.1016/j.palaeo.2017.10.033
  29. Pettijohn, F. J., Potter, P. E., dan Siever, R., 1987. Introduction and source materials. In Sand and sandstone (pp. 1-21). Springer, New York, NY
  30. Powers, M.C., 1953, A new roundness scale for sedimentary particles. Journal of Sedimentary Research, 23(2), 117–119. DOI: https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D
  31. Rosidi, H.M.D., dan Tjokrosapoetro, S., 1996. Peta geologi lembar Kupang-Atambua, Timor: Geological map of Kupang-Atambua quadrangles, Timor. Bandung: Pusat Penelitian dan Pengembangan Geologi
  32. Sawyer, R. K., Sani, K., dan Brown, S., 1993. The stratigraphy and sedimentology of West Timor, Indonesia. Proceedings 22nd Annual Meeting Indonesian Petroleum Association, 534-574
  33. Smith, R.B. dan Silver, E. A., 1991. Geology of a Miocene collision complex, Buton, eastern Indonesia. Geological Society of America Bulletin, 103(5), 660-678. DOI: https://doi.org/10.1130/0016-7606(1991)103<0660:GOAMCC>2.3.CO;2
  34. Taylor, J.M., 1950. Pore-space reduction in sandstones. AAPG Bulletin, 34(4), 701–716. DOI: 10.1306/3D933F47-16B1-11D7-8645000102C1865D
  35. Wajzer, M. R., Barber, A. J., dan Hidayat, S., 1991. Accretion, collision and strike-slip faulting: the Woyla Group as a key to the tectonic evolution of North Sumatra. Journal of Southeast Asian Earth Sciences, 6(3-4), 447-461. DOI: https://doi.org/10.1016/0743-9547(91)90087-E
  36. Wilson, M., 2005. Modeling the Sumatra-Andaman Earthquake Reveals a Complex, Nonuniform Rupture. Physics Today, 58(6), 19-21. DOI: 10.1063/1.1996463
  37. Yerino, L.N., dan Maynard, J.B., 1984. Petrography of modern marine sands from the Peru‐Chile Trench and adjacent areas. Sedimentology, 31(1), 83-89. DOI: https://doi.org/10.1111/j.1365-3091.1984.tb00724.x
  38. Zahirovic, S., Matthews, K.J., Flament, N., Müller, R.D., Hill, K.C., Seton, M., dan Gurnis, M., 2016. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth-Science Reviews, 162, 293-337. DOI: https://doi.org/10.1016/j.earscirev.2016.09.005

Last update:

No citation recorded.

Last update:

No citation recorded.