skip to main content

Dolines Phenomenon Determination Using by Geological and Geoelectrical Resistivity Survey Approach in Bedoyo Village, Ponjong Subdistrict, Gunung Kidul Regency

1Institut Teknologi Nasional Yogyakarta, Indonesia

2ITNY, Indonesia

Received: 10 Jan 2022; Revised: 1 Aug 2022; Accepted: 2 Sep 2022; Available online: 1 Nov 2022; Published: 1 Nov 2022.
Open Access Copyright (c) 2022 Jurnal Geosains dan Teknologi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Gunung Kidul Regency is a highland consisting of carbonate rocks dominantly. Bedoyo village in Ponjong sub district has a lot of dolines, but in the summer season, the dolines become dry and could not be water storage. Geological mapping is included in geomorphological, rock observation, structural mapping also petrographical analysis in the laboratory. A Geophysics survey is to observe the subsurface rock distribution laterally and vertically with dipole-dipole configuration. The resistivity method is to determine the resistivity value for the depth of fewer than 40 meters with the length of electrodes of about 250 meters. The result of the geological and geophysical analysis is to review the dolines phenomenon that could not be a shallow aquifer. It is caused by the subsurface condition beneath the dolines consisting of carbonated rocks with poor porosity, lenses of impermeable tuffaceous claystone, and igneous rock. Those rock basements have a moderate to poor porosity in the aquifer. The less opportunity to be a good aquifer if the deeper rock is an impermeable igneous rock. An alternative geophysical survey is needed to observe the deeper rock vertically.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
titik sampel pengambilan data
Subject
Type Other
  Download (1MB)    Indexing metadata
Keywords: telaga; akuifer; Bedoyo; geolistrik; resistivitas
Funding: Institus Teknologi Nasional Yogyakarta

Article Metrics:

  1. Adji, T.N., 2003. Agresivitas Airtanah Karst Sungai Bawah Tanah Bribin, Gunung Sewu. Pre-prints, Gunung Sewu-Indonesian Cave and Karst Journal, 1(1), 1-14
  2. Rizqi, A.H.F. and Fatimah, 2020. Penentuan Batuan Alas dan Batuan Penyekat berdasarkan Metode Geolistrik Konfigurasi Dipole-Dipole pada Telaga Gesing, Pucanganom, Kabupaten Gunung Kidul. Prosiding Seminar Nasional Rekayasa Teknologi Industri dan Informasi- (ReTII-15), 247-254
  3. Angel, J.C., Nelson, D.O., Panno, S.V., 2004. Comparison of a new GIS-based technique and a manual method for determining sinkhole density: an example from Illinois' sinkhole plain. Journal of Cave and Karst Studies, 66(1), 9-17
  4. Bahagiarti, S.K., 2004. Mengenal hidrogeologi karst. Yogyakarta: Pusat Studi Karst Lembaga Penelitian dan Pengabdian Kepada Masyarakat UPN “Veteran” Yogyakarta
  5. Beck BF. 2004. Soil piping and sinkhole failures. In White WB (ed). Encyclopedia of Caves, 523–528. New York: Elsevier
  6. Cantrell, D.L. and Hagerty, R.M., 1999. Microporosity in Arab formation carbonates, Saudi Arabia. GeoArabia, 4(2), 129-154. DOI: https://doi.org/10.2113/geoarabia0402129
  7. Caramanna G, Ciotoli G, Nisio S (2008) A review of natural sinkhole phenomena in Italian plain areas. Nat Hazards 45:145–172
  8. Damayanti, A. and Sari, D.F.N., 2018. Karakteristik dan pola persebaran doline di Kecamatan Ponjong dan Semanu, Kabupaten Gunungkidul. Jurnal Geografi Lingkungan Tropik, 2(2), 50-57
  9. Dog ̆an U. and Yılmaz M., 2011. Natural and induced sinkholes of the Obruk Plateau and Karapınar-Hotamıs_ Plain, Turkey. Journal of Asian Earth Sciences, 40(2), 496–508. DOI: https://doi.org/10.1016/j.jseaes.2010.09.014
  10. Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: W.E. Ham (ed). Classification of carbonate rocks. AAPG Memoir, 1, 108-121
  11. Embry, A.F. and Klovan, J.E., 1971. A late Devonian reef tract on northeastern Banks Island, NWT. Bulletin of Canadian Petroleum Geology, 19(4), 730-781. DOI: https://doi.org/10.35767/gscpgbull.19.4.730
  12. Faivre, S. And Reiffsteck, P., 2002. From Doline distribution to tectonics movements example of the Velebit Mountain range, Croatia. Acta Carsologica, 31(3), 139–154. DOI: https://doi.org/10.3986/AC.V31I3.384
  13. Ford, D.C. and Williams, P., 2007. Karst Hydrogeology and Geomorphology. Chichester: John Wiley
  14. DOI: https://doi.org/10.1002/9781118684986
  15. Galve, J.P., Castañeda, C., Gutiérrez, F., Herrera, G., 2015. Assessing sinkhole activity in the Ebro Valley mantled evaporite karst using advanced DInSAR. Geomorphology, 229, 30–44. DOI: https://doi.org/10.1016/j.geomorph.2014.07.035
  16. Grabau, A.W., 1904. On the Classification of Sedimentary Rocks. New Jersey: Princeton University
  17. Guarino P.M., Nisio, S., 2011. Anthropogenic sinkholes in the territory of the city of Naples (Southern Italy). Physics and Chemistry of the Earth, Parts A/B/C, 49, 92-102. DOI: 10.1016/j.pce.2011.10.023
  18. Mount, J., 1985. Mixed siliciclastic and carbonate sediments: a proposed first‐order textural and compositional classification. Sedimentology, 32(3), 435-442. DOI: https://doi.org/10.1111/j.1365-3091.1985.tb00522.x
  19. Nagendrapapa, G. 2002. Organic Synthesis using Clay Catalyst. Resonanc, 7, 64-77
  20. Orndorff, R.C., Weary, D.J., Lagueux, K.M., 2000. Geographic information system analysis of geologic controls on the distribution on Dolines in the Ozarks of South-Central Missouri, USA. Acta Carso- logica, 29(2), 161–175. DOI: https://doi.org/10.3986/ac.v29i2.456
  21. Ozdemir, A., 2016. Sinkhole susceptibility mapping using logistic regression in Karapınar (Konya, Turkey). Bulletin of Engineering Geology and the Environment, 75, 681-707. DOI: https://doi.org/10.1007/s10064-015-0778-x
  22. Parise, M., Closson, D., Gutiérrez, F., Stevanović, Z., 2015. Anticipating and managing engineering problems in the complex karst environment. Environmental Earth Sciences, 74, 7823-7835. DOI: https://doi.org/10.1007/s12665-015-4647-5
  23. Prasetyadi, C., Sudarno, I., Indranadi, V. B., Surono, S., 2011. Pola Dan Genesa Struktur Geologi Pegunungan Selatan, Provinsi Daerah Istimewa Yogyakarta dan Provinsi Jawa Tengah. Jurnal Geologi dan Sumberdaya Mineral, 21(2), 91-107. DOI: rg/10.33332/jgsm.geologi.v21i2.138
  24. Surono, B.T. and Sudarno, I., 1992. Peta Geologi Lembar Surakarta-Giritontro, Jawa. Bandung: Pusat Penelitian dan Pengembangan Geologi
  25. van Zuidam, R.A., 1979. Terrain analysis and classification using aerial photographs: a geomorphological approach (No. 526.982 V3)
  26. van Zuidam, R.A., 1983. Guide to Geomorphologic aerial photographic interpretation and mapping. Netherlands: ITC Enschede
  27. Waltham, A.C. and Fookes, P.G., 2003. Engineering classification of karst ground conditions. Quarterly Journal of Engineering Geology and Hydrogeology, 36, 101–118
  28. Waltham, T., Bell, F., Culshaw, M., 2005. Sinkholes and Subsidence. Springer: Chichester
  29. White, W.B., 1988. Geomorphology and Hydrogeology of Karst Terrains. New York: Oxford University Press
  30. Yilmaz, I., 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environmental Earth Science, 61(4), 821–836

Last update:

No citation recorded.

Last update:

No citation recorded.