skip to main content

Slip Rate of Kumering Fault in Lampung Province Calculated from GPS Data from 2007 to 2021

1Teknik Geomatika, Institut Teknologi Sumatra, Indonesia

2Badan Informasi Geospasial, Indonesia

Received: 29 Dec 2021; Revised: 1 Aug 2022; Accepted: 2 Sep 2022; Available online: 1 Nov 2022; Published: 1 Nov 2022.
Open Access Copyright (c) 2022 Jurnal Geosains dan Teknologi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract
Kumering Fault in Lampung Province is a segment of SFZ that was tectonically active region that had generates large earthquakes. The earthquake hazard around Kumering Fault can be estimated by understanding slip rate of Kumering Fault. This research aim is to estimate slip rate of Kumering Fault by using GPS data from 2007 to 2021. GPS data used in this research are 6 periodic GPS sites and 1 continuous Sumatran GPS Array site. GPS data is processed to obtain daily solution coordinates which are used to calculate velocity by using least-square method of linear regression. Fault parallel velocities are calculated to estimate slip rate and locking depth of Kumering Fault. The  The process to obtain slip rate is using grid-search method by finding best fit velocities for all GPS sites. The velocities of GPS sites indicate Sundaland Plate movement. Fault parallel velocities shows the typical movement of right-lateral Kumering Fault. The slip rate of Kumering Fault estimated from this study is 18.2 ± 10 mm/year while the locking depth of the Kumering Fault is 17 ± 3 km. It proves that SFZ is rigid block. However, building more GPS sites in area study is mandatory to obtain better result.
Fulltext View|Download
Keywords: kumering fault; fault; slip rate; locking depth; sumatran fault zone

Article Metrics:

  1. Aktug, B., Nocquet, J. M., Cingöz, A., Parsons, B., Erkan, Y., England, P., and Tekgül, A. 2009. Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block‐like behavior. Journal of Geophysical Research: Solid Earth, 114(B10). DOI: 10.1029/2008JB006000
  2. Alchalbi, A., Daoud, M., Gomez, F., McClusky, S., Reilinger, R., Romeyeh, M. A., and Barazangi, M. 2010. Crustal deformation in northwestern Arabia from GPS measurements in Syria: Slow slip rate along the northern Dead Sea Fault. Geophysical Journal International, 180(1), 125-135. https://doi.org/10.1111/j.1365-246x.2009.04431.x
  3. Alif, S. M., Meilano, I., Gunawan, E., and Efendi, J. 2016. Evidence of postseismic deformation signal of the 2007 M8.5 Bengkulu earthquake and the 2012 M8.6 Indian Ocean earthquake in Southern Sumatra, Indonesia, based on GPS data. Journal of Applied Geodesy, 10(2), 103-108. https://doi.org/10.1515/jag-2015-0019
  4. Alif, S. M., Fattah, E. I., and Kholil, M. 2020a. Geodetic slip rate and locking depth of east Semangko Fault derived from GPS measurement. Geodesy and Geodynamics, 11(3), 222-228. https://doi.org/10.1016/j.geog.2020.04.002
  5. Alif, S. M., Ardiansyah, M. I., and Wiyono, S. 2020b. Segmentation of Sumatran Fault Zone in Tanggamus District, Lampung based on GPS Displacement and SRTM Data. In IOP Conference Series: Earth and Environmental Science 537(1), p. 012002. IOP Publishing
  6. Alif, S.M. and Silaen, R.A., 2020c. Klasifikasi Parameter Penyebab Kemacetan Jalan Kolektor. Jurnal Manajemen Transportasi & Logistik, 7(1), pp.25-36
  7. Alif, S.M., Hidayah, A.N., Fauzi, A.I., and Perdana, R.S. 2021a. Analisis Gempa Bumi sebagai Faktor Penyebab Kejadian Tanah Longsor. Jurnal Lingkungan dan Bencana Geologi, 12(3). http://dx.doi.org/10.34126/jlbg.v12i3.356
  8. Alif, S.M. and Hapsoro, P.T., 2021b. Penentuan Titik IGS sebagai Titik Ikat dalam Pengolahan Data GNSS untuk Studi Geodinamika di Pulau Sumatra. Jurnal Tekno Global 10(2). http://dx.doi.org/10.36982/ jtg.v10i2.1921
  9. Alif, S.M., Fattah, E.I., Kholil, M. and Anggara, O., 2021c. Source of the 2019 Mw6. 9 Banten Intraslab earthquake modelled with GPS data inversion. Geodesy and Geodynamics, 12(4), 308-314. https://doi.org/10.1016/j. geog.2021.06.001
  10. Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X. 2016. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 121(8), 6109-6131. https:// doi.org/10.1002/2016jb013098
  11. Aribowo, S., Muslim, D., Natawidjaja, D. H., and Daryono, M. R. 2017. Sub-Segmentasi Sesar Pada Segmen Kumering Antara Danau Ranau Hingga Lembah Suoh, Lampung Barat Subdivision Of Segmentation In Kumering Segment Between Ranau Lake To Suoh Valley, West Lampung. Jurnal Lingkungan dan Bencana Geologi, 8(1), 31-46. http://dx.doi.org/10.34126/jlbg.v8i1.168
  12. Dach, R., and Walser, P. 2015. Bernese GNSS Software Version 5.2
  13. Djarwadi, D., Natawidjaja, D. H., and Daryono, M. R. 2019. Geological and active fault settings surroundings Tigadihaji Dam of Indonesia
  14. Evans E. L. 2018. A Comprehensive Analysis of eodetic Slip‐Rate Estimates and Uncertainties in California. Bulletin of the Seismological Society of America, 108(1), 1-18. https://doi.org/10.1785/ 0120170159
  15. Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L. and Seal, D., 2007. The shuttle radar topography mission. Reviews of geophysics, 45(2). https://doi.org/10.1029/2005RG000183
  16. Hidayat, M. N., Meilano, I., and Gumilar, I. 2012. Regangan Tektonik Dan Estimasi Potensi Bahaya Gempa Di Selat Sunda Berdasarkan Data Pengamatan Gps Tectonic Strain And Seismic Hazard Estimation In Sunda Strait Based On Gps Observation Data. Widyariset, 15(3), 619-628
  17. Hu, G., Brown, N., Nando, N., Dawson, J., Harrison, C., and Jia, M. 2014. Global Navigation Satellite Systems (GNSS) Activities at Geoscience Australia. Geoscience Australia
  18. Hurukawa, N., Wulandari, B. R., and Kasahara, M. 2014. Earthquake history of the Sumatran fault, Indonesia, since 1892, derived from relocation of large earthquakes. Bulletin of the Seismological Society of America, 104(4), 1750-1762. https://doi.org/10.1785/0120130201
  19. Kuncoro, H., Meilano, I., and Susilo, S. 2019. Sunda and Sumatra Block Motion in ITRF2008. In E3S Web of Conferences, 94, p. 04006. EDP Sciences. DOI: https://doi.org/10.1051/e3sconf/20199404006
  20. Lifton, Z. M., Newman, A. V., Frankel, K. L., Johnson, C. W., and Dixon, T. H. 2013. Insights into distributed plate rates across the Walker Lane from GPS geodesy. Geophysical Research Letters, 40(17), 4620-4624. DOI: 10.1002/grl.50804
  21. McCaffrey, R. 2009. The tectonic framework of the Sumatran subduction zone. Annual Review of Earth and Planetary Sciences, 37, 345-366. DOI: 10.1146/annurev.earth.031208.100212
  22. McLoughlin, I. V., Wong, K. J., and Tan, S. L. 2011. Data collection, communications and processing in the Sumatran GPS array (SuGAr). In Proceedings of the World Congress on Engineering, 2, 6-8
  23. Meilano, I., Abidin, H. Z., Andreas, H., Gumilar, I., Sarsito, D., Hanifa, R., and Fukuda, Y. 2012. Slip rate estimation of the Lembang Fault West Java from geodetic observation. Journal of Disaster Research, 7(1), 12-18. https://doi.org/10.20965/ jdr.2012.p0012
  24. Meilano, I., Susilo, S., Gunawan, E. and Parjanto, B., 2021. Geodetic Slip Rate Estimates For The Kumering And Semangko Segments Of The Sumatera Fault. Jurnal Meteorologi dan Geofisika, 22(1), 39-47. http://dx.doi.org/10.31172/jmg.v22i1.802
  25. Natawidjaja, D. H., Bradley, K., Daryono, M. R., Aribowo, S., and Herrin, J. 2017. Late Quaternary eruption of the Ranau Caldera and new geological slip rates of the Sumatran Fault Zone in Southern Sumatra, Indonesia. Geoscience Letters, 4(1), 1-15. https://doi.org/10.1186/s40562-017-0087-2
  26. Natawidjaja, D. H. 2018. Updating active fault maps and sliprates along the Sumatran Fault Zone, Indonesia. In IOP Conference Series: Earth and Environmental Science, 118(1), p.012001. DOI: https://doi.org/10.1088/1755-1315/118/1/012001
  27. Petersen, M. D., Zeng, Y., Haller, K. M., McCaffrey, R., Hammond, W. C., Bird, P., and Thatcher, W. R. 2014. Geodesy-and geology-based slip-rate models for the Western United States (excluding California) national seismic hazard maps. Reston: U.S. Geological Survey. https://doi.org/10.3133/ofr20131293
  28. Rasimeng, S., Helmi, M., Tugiyono, T., and Suharno, S. 2020. Fractal Dimension Analysis And Earthquake Repeated Period Estimation In Sumatera Fault Zone Case: Bengkulu-Lampung-Sunda Segment. Lampung: Universitas Lampung
  29. Saleh, M., Masson, F., Mohamed, A. M. S., Boy, J. P., Abou-Aly, N., and Rayan, A. 2018. Recent ground deformation around lake Nasser using GPS and InSAR, Aswan, Egypt. Tectonophysics, 744, 310-321. https://doi.org/10.1016/j.tecto.2018.07.005
  30. Sieh, K., and Natawidjaja, D. 2000. Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research: Solid Earth, 105(B12), 28295-28326. https://doi.org/10.1029/2000jb900120
  31. Wan, Y. G. 2015. A grid search method for determination of tectonic stress tensor using qualitative and quantitative data of active faults and its application to the Urumqi area. Chinese Journal of Geophysics, 58(9), 3144-3156. doi: 10.6038/cjg20150911
  32. Wessel, P., Smith, W. H., Scharroo, R., Luis, J., and Wobbe, F. 2013. Generic mapping tools: improved version released. Eos, Transactions American Geophysical Union, 94(45), 409-410. https://doi.org/10.1002/2013eo450001

Last update:

No citation recorded.

Last update:

No citation recorded.