skip to main content

Potential Of Solid Waste Conversion Into Gelatin In The Fisheries Industry Of Indonesia

*Priyosetyoko Priyosetyoko  -  Department of Chemistry Diponegoro University, Indonesia
W Widayat  -  Departement of Chemical Engineering, Diponegoro University, Semarang, Indonesia
Meiny Suzery  -  Departement of Chemistry Diponegoro University, Semarang, Indonesia
Tri Winarni Agustini  -  Department of Fishery Technology, Diponegoro University, Indonesia
Open Access Copyright (c) 2022 Indonesia Journal of Halal under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

There has been an increase in aquaculture production in Indonesia from 2015 to 2019, which is 62.31%. Statistics Indonesia showed an increase in commodities for capture fisheries and aquaculture, namely 7.94% and 28.87%, while there was a decrease in fresh or cold fillet fish commodities, namely -6.89%, referring to data from January to June 2021 compared to the previous quarter of 2020. The development of fishery processing industries such as fish fillets, leaving waste in the form of skin, bones, fins, scales, heads, offal, and liquid. The remaining waste, if not managed properly, can have negative effects on the environment. One of the researches on the utilization of fish meat processing industrial waste is to make gelatin. Gelatin is a product of the hydrolysis of collagen from animal skin or bones. Gelatin from fish needs to be developed because it is a halal product. Gelatin hydrolysis can be carried out under acidic, alkaline, and enzymatic conditions. In the filtration process of making gelatin sheets, there is a by-product in the form of liquid gelatin. Research on the purification of polypeptides from gelatin from fish has been widely carried out. Polypeptides have benefits in the fields of cosmetics and medical health. In general, glycine in fish gelatin is higher than in mammals, while proline is the opposite. Research related to the purification of glycine from fish gelatin is interesting because it is viewed from the point of view of the benefits of biomolecular science and aspects of Indonesia's natural resources.

 Keywords: Waste; Gelatin; Polypeptides; Glycine

Fulltext View|Download
Keywords: environmental chemistry, chemical engineering, food science

Article Metrics:

  1. Abd Elgadir, M.; Mirghani, M. E. S.; Adam, A. Fish Gelatin and Its Applications in Selected Pharmaceutical Aspects as Alternative Source to Pork Gelatin. J. Food, Agric. Environ. 2013, 11 (1), 73–79
  2. Abdelmalek, B. E.; Gómez-Estaca, J.; Sila, A.; Martinez-Alvarez, O.; Gómez-Guillén, M. C.; Chaabouni-Ellouz, S.; Ayadi, M. A.; Bougatef, A. Characteristics and Functional Properties of Gelatin Extracted from Squid (Loligo Vulgaris) Skin. LWT - Food Sci. Technol. 2016, 65, 924–931. https://doi.org/10.1016/j.lwt.2015.09.024
  3. Abuine, R.; Rathnayake, A. U.; Byun, H. G. Biological Activity of Peptides Purified from Fish Skin Hydrolysates. Fish. Aquat. Sci. 2019, 22 (1), 1–14. https://doi.org/10.1186/s41240-019-0125-4
  4. Ahmad, T.; Ismail, A.; Ahmad, S. A.; Khalil, K. A.; Kumar, Y.; Adeyemi, K. D.; Sazili, A. Q. Recent Advances on the Role of Process Variables Affecting Gelatin Yield and Characteristics with Special Reference to Enzymatic Extraction: A Review. Food Hydrocoll. 2017, 63, 85–96. https://doi.org/10.1016/j.foodhyd.2016.08.007
  5. Alfaro, A. da T.; Balbinot, E.; Weber, C. I.; Tonial, I. B.; Machado-Lunkes, A. Fish Gelatin: Characteristics, Functional Properties, Applications and Future Potentials. Food Eng. Rev. 2015, 7 (1), 33–44. https://doi.org/10.1007/s12393-014-9096-5
  6. Ali, A. M. M.; Kishimura, H.; Benjakul, S. Physicochemical and Molecular Properties of Gelatin from Skin of Golden Carp (Probarbus Jullieni) as Influenced by Acid Pretreatment and Prior-Ultrasonication. Food Hydrocoll. 2018, 82, 164–172. https://doi.org/10.1016/j.foodhyd.2018.03.052
  7. Alipal, J., Mohd Pu’ad, N. A. S., Lee, T. C., Nayan, N. H. M., Sahari, N., Basri, H., Idris, M. I., & Abdullah, H. Z. (2019). A review of gelatin: Properties, sources, process, applications, and commercialisation. Materials Today: Proceedings, 42(February), 240–250. https://doi.org/10.1016/j.matpr.2020.12.922
  8. Al-Nimry, S.; Dayah, A. A.; Hasan, I.; Daghmash, R. Cosmetic, Biomedical and Pharmaceutical Applications of Fish Gelatin/Hydrolysates. Mar. Drugs 2021, 19 (3). https://doi.org/10.3390/md19030145
  9. Amasuomo, E., & Baird, J. (2016). The Concept of Waste and Waste Management. Journal of Management and Sustainability, 6(4), 88. https://doi.org/10.5539/jms.v6n4p88
  10. Ape, F.; Manini, E.; Quero, G. M.; Luna, G. M.; Sarà, G.; Vecchio, P.; Brignoli, P.; Ansferri, S.; Mirto, S. Biostimulation of in Situ Microbial Degradation Processes in Organically-Enriched Sediments Mitigates the Impact of Aquaculture. Chemosphere 2019, 226, 715–725. https://doi.org/10.1016/j.chemosphere.2019.03.178
  11. Araújo, C. S.; Rodrigues, A. M. C.; Peixoto Joele, M. R. S.; Araújo, E. A. F.; Lourenço, L. F. H. Optmizing Process Parameters to Obtain a Bioplastic Using Proteins from Fish Byproducts through the Response Surface Methodology. Food Packag. Shelf Life 2018, 16 (February), 23–30. https://doi.org/10.1016/j.fpsl.2018.01.009
  12. Araujo, J., Sica, P., Costa, C., & Márquez, M. C. (2021). Enzymatic Hydrolysis of Fish Waste as an Alternative to Produce High Value-Added Products. Waste and Biomass Valorization, 12(2), 847–855. https://doi.org/10.1007/s12649-020-01029-x
  13. Arvanitoyannis, I. S.; Kassaveti, A. Fish Industry Waste: Treatments, Environmental Impacts, Current and Potential Uses. Int. J. Food Sci. Technol. 2008, 43 (4), 726–745. https://doi.org/10.1111/j.1365-2621.2006.01513.x
  14. Arvanitoyannis, I. S., & Tserkezou, P. (2014). Fish Waste Management. Seafood Processing: Technology, Quality and Safety, i, 263–309. https://doi.org/10.1002/9781118346174.ch11
  15. Bedis, G.; Gümüs, T.; Damla, D.; Kamer, A. Rheological Properties of Fish ( Sparus Aurata ) Skin Gelatin Modified by Agricultural Wastes Extracts. 2022, 393 (June). https://doi.org/10.1016/j.foodchem.2022.133348
  16. Bhunia, P. Fundamentals of Biological Treatment. Compr. Water Qual. Purif. 2014, 3, 47–73. https://doi.org/10.1016/B978-0-12-382182-9.00048-7
  17. Bücker, F., Marder, M., Peiter, M. R., Lehn, D. N., Esquerdo, V. M., Antonio de Almeida Pinto, L., & Konrad, O. (2020). Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system. Renewable Energy, 147, 798–805. https://doi.org/10.1016/j.renene.2019.08.140
  18. Caldeira, M., Barreto, C., Pestana, P., Cardoso, M. A. T., Franca, Z., Plataforma, I., & Módulo, P. I. K. (2018). CODEN ( USA ): JSERBR Fish Residue Valorisation by the Production of Value- Added Compounds Towards a Sustainable Zero Waste Industry : A Critical Review Available online www.jsaer.com Journal of Scientific and Engineering Research , 2018 , 5 ( 4 ): 418-4. Journal of Scientific and Engineering Research, 5(May), 418–447
  19. Carvajal-Mena, N.; Tabilo-Munizaga, G.; Pérez-Won, M.; Lemus-Mondaca, R. Valorization of Salmon Industry By-Products: Evaluation of Salmon Skin Gelatin as a Biomaterial Suitable for 3D Food Printing. Lwt 2022, 155. https://doi.org/10.1016/j.lwt.2021.112931
  20. Casanova, F.; Mohammadifar, M. A.; Jahromi, M.; Petersen, H. O.; Sloth, J. J.; Eybye, K. L.; Kobbelgaard, S.; Jakobsen, G.; Jessen, F. Physico-Chemical, Structural and Techno-Functional Properties of Gelatin from Saithe (Pollachius Virens) Skin. Int. J. Biol. Macromol. 2020, 156, 918–927. https://doi.org/10.1016/j.ijbiomac.2020.04.047
  21. Charoenchokpanich, W.; Muangrod, P.; Rungsardthong, V.; Vatanyoopaisarn, S.; Wonganu, B.; Roytrakul, S.; Thumthanaruk, B. Effect of Hydrochloric Acid Extraction on Yield and Gel Properties of Gelatine from Salted Jellyfish By-Products. E3S Web Conf. 2021, 302, 02009. https://doi.org/10.1051/e3sconf/202130202009
  22. Chen, W.; Ma, H.; Wang, Y. Y. Recent Advances in Modified Food Proteins by High Intensity Ultrasound for Enhancing Functionality: Potential Mechanisms, Combination with Other Methods, Equipment Innovations and Future Directions. Ultrason. Sonochem. 2022, 85 (January), 105993. https://doi.org/10.1016/j.ultsonch.2022.105993
  23. Chen, T.; Song, Z.; Liu, H.; Zhou, C.; Hong, P.; Deng, C. Physicochemical Properties of Gelatin Produced from Nile Tilapia Skin Using Chemical and Fermentation Pretreatments. Food Biosci. 2022, 47 (March), 101650. https://doi.org/10.1016/j.fbio.2022.101650
  24. Chen, L.; Qiang, T.; Chen, X.; Ren, W.; Zhang, H. J. Gelatin from Leather Waste to Tough Biodegradable Packaging Film: One Valuable Recycling Solution for Waste Gelatin from Leather Industry. Waste Manag. 2022, 145 (March), 10–19. https://doi.org/10.1016/j.wasman.2022.04.023
  25. Ching, Y. C.; Redzwan, G. Biological Treatment of Fish Processing Saline Wastewater for Reuse as Liquid Fertilizer. Sustain. 2017, 9 (7). https://doi.org/10.3390/su9071062
  26. Coppola, D., Lauritano, C., Palma Esposito, F., Riccio, G., Rizzo, C., & de Pascale, D. (2021). Fish Waste: From Problem to Valuable Resource. Marine Drugs, 19(2), 1–39. https://doi.org/10.3390/md19020116
  27. Derkach, S. R.; Kolotova, D. S.; Kuchina, Y. A.; Shumskaya, N. V. Characterization of Fish Gelatin Obtained from Atlantic Cod Skin Using Enzymatic Treatment. Polymers (Basel). 2022, 14 (4). https://doi.org/10.3390/polym14040751
  28. Derkach, S. R., Kuchina, Y. A., Baryshnikov, A. V., Kolotova, D. S., & Voron’ko, N. G. (2019). Tailoring cod gelatin structure and physical properties with acid and alkaline extraction. Polymers, 11(10), 1–17. https://doi.org/10.3390/polym11101724
  29. Dubey, S., Meher, P., Shetty, A., Umtol, A., & Kirloskar, D. S. (2021). Waste Management in Fishery Industry: A Review. International Journal of Engineering Research & Technology, 9(3), 206–209. www.ijert.org
  30. Etxabide, A., Leceta, I., Cabezudo, S., Guerrero, P., & De La Caba, K. (2016). Sustainable fish gelatin films: From food processing waste to compost. ACS Sustainable Chemistry and Engineering, 4(9), 4626–4634. https://doi.org/10.1021/acssuschemeng.6b00750
  31. Fawale, S. O., Abuibaid, A., Hamed, F., Kittiphattanabawon, P., & Maqsood, S. (2021). Molecular, structural, and rheological characterization of camel skin gelatin extracted using different pretreatment conditions. Foods, 10(7). https://doi.org/10.3390/foods10071563
  32. FAO. 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en
  33. Feng, X., Bansal, N., & Yang, H. (2016). Fish gelatin combined with chitosan coating inhibits myofibril degradation of golden pomfret (Trachinotus blochii) fillet during cold storage. Food Chemistry, 200(2015), 283–292. https://doi.org/10.1016/j.foodchem.2016.01.030
  34. Feng, X.; Dai, H.; Ma, L.; Fu, Y.; Yu, Y.; Zhu, H.; Wang, H.; Sun, Y.; Tan, H.; Zhang, Y. Effect of Microwave Extraction Temperature on the Chemical Structure and Oil-Water Interface Properties of Fish Skin Gelatin. Innov. Food Sci. Emerg. Technol. 2021, 74 (2). https://doi.org/10.1016/j.ifset.2021.102835
  35. Feng, X.; Liu, T.; Ma, L.; Dai, H.; Fu, Y.; Yu, Y.; Zhu, H.; Wang, H.; Tan, H.; Zhang, Y. A Green Extraction Method for Gelatin and Its Molecular Mechanism. Food Hydrocoll. 2022, 124 (2). https://doi.org/10.1016/j.foodhyd.2021.107344
  36. Giménez, B.; Turnay, J.; Lizarbe, M. A.; Montero, P.; Gómez-Guillén, M. C. Use of Lactic Acid for Extraction of Fish Skin Gelatin. Food Hydrocoll. 2005, 19 (6), 941–950. https://doi.org/10.1016/j.foodhyd.2004.09.011
  37. Gonçalves, A. A. Ozone - An Emerging Technology for the Seafood Industry. Brazilian Arch. Biol. Technol. 2009, 52 (6), 1527–1539. https://doi.org/10.1590/S1516-89132009000600025
  38. Gómez-Sanabria, A., Zusman, E., Höglund-Isaksson, L., Klimont, Z., Lee, S. Y., Akahoshi, K., Farzaneh, H., & Chairunnisa. (2020). Sustainable wastewater management in Indonesia’s fish processing industry: Bringing governance into scenario analysis. Journal of Environmental Management, 275(xxxx). https://doi.org/10.1016/j.jenvman.2020.111241
  39. Gopikumar, S.; Tharanyalakshmi, R.; Kannah, R. Y.; Selvam, A.; Banu, J. R. Aerobic Biodegradation of Food Wastes; INC, 2020. https://doi.org/10.1016/B978-0-12-818353-3.00011-0
  40. Guo, G.; Li, Y.; Zhou, S.; Chen, Y.; Qin, Y.; Li, Y. Y. Enhanced Degradation and Biogas Production of Waste Activated Sludge by a High-Solid Anaerobic Membrane Bioreactor Together with in Pipe Thermal Pretreatment Process. Bioresour. Technol. 2022, 346 (December 2021), 126583. https://doi.org/10.1016/j.biortech.2021.126583
  41. Haug, I. J.; Draget, K. I. Gelatin. Handb. Food Proteins 2011, No. 1964, 92–115. https://doi.org/10.1533/9780857093639.92
  42. Henriques, A.; Vázquez, J. A.; Valcarcel, J.; Mendes, R.; Bandarra, N. M.; Pires, C. Characterization of Protein Hydrolysates from Fish Discards and By-Products from the North-West Spain Fishing Fleet as Potential Sources of Bioactive Peptides. Mar. Drugs 2021, 19 (6). https://doi.org/10.3390/md19060338
  43. Huang, T.; Tu, Z. cai; Xinchen-Shangguan; Wang, H.; Zhang, L.; Sha, X. mei. Rheological and Structural Properties of Fish Scales Gelatin: Effects of Conventional and Ultrasound-Assisted Extraction. Int. J. Food Prop. 2017, 20 (2), 1210–1220. https://doi.org/10.1080/10942912.2017.1295388
  44. Huang, T.; Tu, Z. cai; Shangguan, X.; Sha, X.; Wang, H.; Zhang, L.; Bansal, N. Fish Gelatin Modifications: A Comprehensive Review. Trends Food Sci. Technol. 2019, 86, 260–269. https://doi.org/10.1016/j.tifs.2019.02.048
  45. Islam, M. R.; Yuhi, T.; Ura, K.; Takagi, Y. Optimization of Extraction of Gelatin from the Head of Kalamtra Sturgeon (Huso Dauricus × Acipenser Scherenkii × Acipenser Transmontanus). Appl. Sci. 2020, 10 (19). https://doi.org/10.3390/APP10196660
  46. Ivanovs, K., Spalvins, K., & Blumberga, D. (2018). Approach for modelling anaerobic digestion processes of fish waste. Energy Procedia, 147, 390–396. https://doi.org/10.1016/j.egypro.2018.07.108
  47. Jafari, H.; Lista, A.; Siekapen, M. M.; Ghaffari-Bohlouli, P.; Nie, L.; Alimoradi, H.; Shavandi, A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers (Basel). 2020, 12 (10), 1–37. https://doi.org/10.3390/polym12102230
  48. Jongjareonrak, A.; Rawdkuen, S.; Chaijan, M.; Benjakul, S.; Osako, K.; Tanaka, M. Chemical Compositions and Characterisation of Skin Gelatin from Farmed Giant Catfish (Pangasianodon Gigas). LWT - Food Sci. Technol. 2010, 43 (1), 161–165. https://doi.org/10.1016/j.lwt.2009.06.012
  49. Kafle, G. K., & Kim, S. H. (2012). Evaluation of the Biogas Productivity Potential of Fish Waste: A Lab Scale Batch Study. Journal of Biosystems Engineering, 37(5), 302–313. https://doi.org/10.5307/jbe.2012.37.5.302
  50. Kang, K. Y., & Chun, B. S. (2004). Behavior of amino acid production from hydrothermal treatment of fish-derived wastes. Korean Journal of Chemical Engineering, 21(6), 1147–1152. https://doi.org/10.1007/BF02719486
  51. Karim, A. A.; Bhat, R. Fish Gelatin: Properties, Challenges, and Prospects as an Alternative to Mammalian Gelatins. Food Hydrocoll. 2009, 23 (3), 563–576. https://doi.org/10.1016/j.foodhyd.2008.07.002
  52. Khiari, Z., Rico., Diana, A. B. M., Ryan, C. B. (2011). The extraction of gelatine from mackerel (Scomber scombrus) heads with the use of different organic acids. Journal of FisheriesSciences.Com, 5(1), 52–63. https://doi.org/10.3153/jfscom.2011007
  53. Kim, Y. B., Jeon, J. H., Choi, S., Shin, J., Lee, Y., & Kim, Y. M. (2018). Use of a filtering process to remove solid waste and antibiotic resistance genes from effluent of a flow-through fish farm. Science of the Total Environment, 615, 289–296. https://doi.org/10.1016/j.scitotenv.2017.09.279
  54. Kolotova, D.; Petrova, L. Technology and Physico-Chemical Properties of Gelatin from Atlantic Cod Skin. KnE Life Sci. 2020, 2020, 426–436. https://doi.org/10.18502/kls.v5i1.6101
  55. Korkmaz, K.; Tokur, B. Optimization of Hydrolysis Conditions for the Production of Protein Hydrolysates from Fish Wastes Using Response Surface Methodology. Food Biosci. 2022, 45 (March 2021), 101312. https://doi.org/10.1016/j.fbio.2021.101312
  56. Kumar, A.; Rani, R.; Paolo, F.; Albarico, J. B.; Pandey, A. Science of the Total Environment Organic Wastes Bioremediation and Its Changing Prospects. Sci. Total Environ. 2022, 824, 153889. https://doi.org/10.1016/j.scitotenv.2022.153889
  57. Lassoued, I., Jridi, M., Nasri, R., Dammak, A., Hajji, M., Nasri, M., & Barkia, A. (2014). Characteristics and functional properties of gelatin from thornback ray skin obtained by pepsin-aided process in comparison with commercial halal bovine gelatin. Food Hydrocolloids, 41, 309–318. https://doi.org/10.1016/j.foodhyd.2014.04.029
  58. Li, P.; Wu, G. Roles of Dietary Glycine, Proline, and Hydroxyproline in Collagen Synthesis and Animal Growth. Amino Acids 2018, 50 (1), 29–38. https://doi.org/10.1007/s00726-017-2490-6
  59. Liao, W.; Zhu, Y.; Lu, Y.; Wang, Y.; Dong, X.; Xia, G.; Shen, X. Effect of Extraction Variables on the Physical and Functional Properties of Tilapia Gelatin. Lwt 2021, 146 (April), 111514. https://doi.org/10.1016/j.lwt.2021.111514
  60. Limpisophon, K., Tanaka, M., Weng, W. Y., Abe, S., & Osako, K. (2009). Characterization of gelatin films prepared from under-utilized blue shark (Prionace glauca) skin. Food Hydrocolloids, 23(7), 1993–2000. https://doi.org/10.1016/j.foodhyd.2009.03.014
  61. Lin, C. C.; Chiou, T. K.; Sung, W. C. Characteristics of Gelatin from Giant Grouper (Epinephelus Lanceolatus) Skin. Int. J. Food Prop. 2015, 18 (11), 2339–2348. https://doi.org/10.1080/10942912.2014.980947
  62. Liu, Y.; Nilsen, P. J.; Maulidiany, N. D. Thermal Pretreatment to Enhance Biogas Production of Waste Aerobic Granular Sludge with and without Calcium Phosphate Precipitates. Chemosphere 2019, 234, 725–732. https://doi.org/10.1016/j.chemosphere.2019.06.104
  63. Ma, Y.; Yang, R.; Zhao, W. Innovative Water-Insoluble Edible Film Based on Biocatalytic Crosslink of Gelatin Rich in Glutamine. Foods 2020, 9 (4). https://doi.org/10.3390/foods9040503
  64. Ma, Y.; Zeng, X.; Ma, X.; Yang, R.; Zhao, W. A Simple and Eco-Friendly Method of Gelatin Production from Bone: One-Step Biocatalysis. J. Clean. Prod. 2019, 209, 916–926. https://doi.org/10.1016/j.jclepro.2018.10.313
  65. Mahmood Lubowa Muhammad, K.; Ariffin, F.; Kamilah, H.; Sulaiman, S. Review of Fish Gelatin Extraction, Properties and Packaging Applications. Food Sci. Qual. Manag. 2016, 56, 47–59
  66. Mariz, D., de Souza, A. C. F. F., Teixeira, S. F., Campos, S. S., de Lucena, R. F. P., & Alves, R. R. N. (2020). Knowledge on the use of catch material for craftwork/handicrafts by an urban fishing community. Indian Journal of Traditional Knowledge, 19(4), 902–909
  67. Mondal T. ; Kundu D.; Jana A.. Aerobic Wastewater Treatment Technologies. 2017, No. March 2018, 1–7
  68. Milovanovic, I.; Hayes, M. Marine Gelatine from Rest Raw Materials. Appl. Sci. 2018, 8 (12), 1–20. https://doi.org/10.3390/app8122407
  69. Mirzapour Kouhdasht, A.; Moosavi-Nasab, M.; Aminlari, M. Gelatin Production Using Fish Wastes by Extracted Alkaline Protease from Bacillus Licheniformis. J. Food Sci. Technol. 2018, 55 (12), 5175–5180. https://doi.org/10.1007/s13197-018-3449-7
  70. Mirzapour-Kouhdasht, A.; Moosavi-Nasab, M.; Lee, C. W.; Yun, H.; Eun, J. B. Structure–Function Engineering of Novel Fish Gelatin-Derived Multifunctional Peptides Using High-Resolution Peptidomics and Bioinformatics. Sci. Rep. 2021, 11 (1), 1–15. https://doi.org/10.1038/s41598-021-86808-9
  71. Musyoka, S. (2016). Concept of microbial bioremediation in aquaculture wastes; Review. International Journal of Advanced Scientific and Technical Research, 5(6), 1–10
  72. Muyasyaroh, H., & Jaziri, A. A. (2020). Effect of different acetic acid concentration on physicochemical characteristics of gelatin from starry trigger fish skin (Abalistes stellaris). IOP Conference Series: Earth and Environmental Science, 493(1). https://doi.org/10.1088/1755-1315/493/1/012039
  73. Naylor, S. J., Moccia, R. D., & Durant, G. M. (1999). The Chemical Composition of Settleable Solid Fish Waste (Manure) from Commercial Rainbow Trout Farms in Ontario, Canada. North American Journal of Aquaculture, 61(1), 21–26. https://doi.org/10.1577/1548-8454(1999)061<0021:tccoss>2.0.co;2
  74. Nhat, D. M. Effect of Ultrasound on Pretreatment of Tuna Skin for Gelatin Production. Vietnam J. Sci. Technol. 2018, 54 (4A), 55. https://doi.org/10.15625/2525-2518/54/4a/11978
  75. Nitsuwat, S.; Zhang, P.; Ng, K.; Fang, Z. Fish Gelatin as an Alternative to Mammalian Gelatin for Food Industry: A Meta-Analysis. Lwt 2021, 141 (January), 110899. https://doi.org/10.1016/j.lwt.2021.110899
  76. Nurilmala, M.; Suryamarevita, H.; Husein Hizbullah, H.; Jacoeb, A. M.; Ochiai, Y. Fish Skin as a Biomaterial for Halal Collagen and Gelatin. Saudi J. Biol. Sci. 2022, 29 (2), 1100–1110. https://doi.org/10.1016/j.sjbs.2021.09.056
  77. O’Donnell, T., Katz, S. H., Romey, A., Fulton, B., Croskey, L., Pearson, P., & Deutsch, J. (2021). Retail Seafood Waste Prevention: Reducing Retail and Consumer Fresh-Fish Waste by Cooking Directly from Frozen. Food and Nutrition Sciences, 12(03), 290–307. https://doi.org/10.4236/fns.2021.123023
  78. Okpala, C. O. R. Fish Processing by Ozone Treatment - Is Further Investigation of Domestic Applications Needful? Chem. Eng. Trans. 2017, 57, 1813–1818. https://doi.org/10.3303/CET1757303
  79. Ottesen, O.; Árnason, J.; Smárason, B. Ö.; Zhuravleva, N.; Björnsdóttir, R. Values from Waste. 2016, 28
  80. Pavlostathis, S. G. Kinetics and Modeling of Anaerobic Treatment and Biotransformation Processes, Second Edi.; Elsevier B.V., 2011; Vol. 6. https://doi.org/10.1016/B978-0-08-088504-9.00385-8
  81. Phillips; Williams. Handbook of Hydrocolloids (Incl. Alginates); 2009
  82. Qhairul, N.; Mohd, I.; Razali, R. S.; Ismail, N. K.; Ramli, R. A.; Rozzamri, A.; Bakar, J.; Shaarani, S. Application of Green Technology in Gelatin Extraction : 2021
  83. Rafael, M. Y., Rafael, R., Landingin, E., Rafael, R., Tayag, G., Santos, J. P., & Rafael, M. J. (2021). Gelatin from Milkfish Scales for Food Application. CLSU International Journal of Science & Technology, 5(1), 47–59. https://doi.org/10.22137/ijst.2021.v5n1.05
  84. Ranasinghe, R. H. A. A.; Kannagara, B. T. S. D. P.; Ratnayake, R. M. C. S. Hydrolysis of Fish Waste Using Fruit Wastes of Ananas Comosus and Carica Papaya for the Formulation of Liquid Fertilizers. Int. J. Recycl. Org. Waste Agric. 2021, 10 (2), 129–143. https://doi.org/10.30486/ijrowa.2021.1891960.1034
  85. Razak, M. A.; Begum, P. S.; Viswanath, B.; Rajagopal, S. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review. Oxid. Med. Cell. Longev. 2017, 2017. https://doi.org/10.1155/2017/1716701
  86. Renuka, V.; Rao Ravishankar, C. N.; Zynudheen, A. A.; Bindu, J.; Joseph, T. C. Characterization of Gelatin Obtained from Unicorn Leatherjacket (Aluterus Monoceros) and Reef Cod (Epinephelus Diacanthus) Skins. Lwt 2019, 116 (August), 108586. https://doi.org/10.1016/j.lwt.2019.108586
  87. Rodríguez, M.; Palop, M. L.; Seseña, S.; Rodríguez, A. Are the Portable Air Cleaners (PAC) Really Effective to Terminate Airborne SARS-CoV-2? Sci. Total Environ. 2021, 785, 0–3. https://doi.org/10.1016/j.scitotenv.2021.147300
  88. Rosen, Y.; Maslennikov, A.; Trabelcy, B.; Gerchman, Y.; Mamane, H. Short Ozonation for Effective Removal and Detoxification of Fermentation Inhibitors Resulting from Thermal Pretreatment. Renew. Energy 2022, 189, 1407–1418. https://doi.org/10.1016/j.renene.2022.03.065
  89. Salem, A.; Fakhfakh, N.; Jridi, M.; Abdelhedi, O.; Nasri, M.; Debeaufort, F.; Zouari, N. Microstructure and Characteristic Properties of Dogfish Skin Gelatin Gels Prepared by Freeze/Spray-Drying Methods. Int. J. Biol. Macromol. 2020, 162, 1–10. https://doi.org/10.1016/j.ijbiomac.2020.06.033
  90. Santos, W. M. dos, Valente, B. S., Nadaletti, W. C., Quadro, M. S., Pieniz, S., Andreazza, R., & Demarco, C. F. (2017). Production of Meal As a Tool for the Valuation of the Fish Residues. Ciência e Natura, 39(3), 767. https://doi.org/10.5902/2179460x28032
  91. Senarathna, P. D. S.; Marapana, R. A. U. J. Comparative Analysis of the Effect of Ultrasound-Assisted and Conventional Water Bath Extraction Methods on the Physicochemical Characteristics of Tilapia Scales Gelatin. J. Aquat. Food Prod. Technol. 2021, 30 (7), 893–906. https://doi.org/10.1080/10498850.2021.1950252
  92. Shabani, A., Jazi, V., Ashayerizadeh, A., & Barekatain, R. (2019). Inclusion of fish waste silage in broiler diets affects gut microflora, cecal short-chain fatty acids, digestive enzyme activity, nutrient digestibility, and excreta gas emission. Poultry Science, 98(10), 4909–4918. https://doi.org/10.3382/ps/pez244
  93. Shaik, M. I.; Sarbon, N. M. A Review on Purification and Characterization of Anti-Proliferative Peptides Derived from Fish Protein Hydrolysate. Food Rev. Int. 2020, 00 (00), 1–21. https://doi.org/10.1080/87559129.2020.1812634
  94. Sharma, P.; Singh, S. P.; Iqbal, H. M. N.; Tong, Y. W. Omics Approaches in Bioremediation of Environmental Contaminants: An Integrated Approach for Environmental Safety and Sustainability. Environ. Res. 2022, 211 (February), 113102. https://doi.org/10.1016/j.envres.2022.113102
  95. Silva Araújo, C.; Pino-Hernández, E.; Souza Batista, J. T.; Sarkis Peixoto Joele, M. R.; de Arimateia Rodrigues do Rego, J.; Henriques Lourenço, L. de F. Optimization of Fish Gelatin Drying Processes and Characterization of Its Properties. Sci. Rep. 2021, 11 (1), 1–14. https://doi.org/10.1038/s41598-021-99085-3
  96. Sinthusamran, S., Benjakul, S., & Kishimura, H. (2014). Characteristics and gel properties of gelatin from skin of seabass (Lates calcarifer) as influenced by extraction conditions. Food Chemistry, 152, 276–284. https://doi.org/10.1016/j.foodchem.2013.11.109
  97. Statistics Indonesia (2021). Bulletin of Foreign Trade Export Statistics by Commodity Group and Country, June 2021. 229. https://www.bps.go.id/publication/2021/08/30/96ab5857c81eba3dcda7989c/buletin-statistik-perdagangan-luar-negeri-ekspor-menurut-kelompok-komoditi-dan-negara-juni-2021.html
  98. Sultana, S.; Ali, M. E.; Ahamad, M. N. U. Gelatine, Collagen, and Single Cell Proteins as a Natural and Newly Emerging Food Ingredients; Elsevier Ltd., 2018. https://doi.org/10.1016/B978-0-08-101892-7.00011-0
  99. Tacias-Pascacio, V. G.; Castañeda-Valbuena, D.; Morellon-Sterling, R.; Tavano, O.; Berenguer-Murcia, Á.; Vela-Gutiérrez, G.; Rather, I. A.; Fernandez-Lafuente, R. Bioactive Peptides from Fisheries Residues: A Review of Use of Papain in Proteolysis Reactions. Int. J. Biol. Macromol. 2021, 184 (April), 415–428. https://doi.org/10.1016/j.ijbiomac.2021.06.076
  100. The Ministry of Marine Affairs and Fisheries Republic of Indonesia (2019). Laporan Tahunan Kementerian Kelautan dan Perikanan Indonesia 2019. Kementerian Kelautan Dan Perikanan Republik Indonesia, 16, 1–169. https://kkp.go.id/an-component/media/upload-gambar-pendukung/kkp/LAPORAN/Laporan Tahunan/LAPORAN TAHUNAN KKP TAHUN 2019_26 Maret FINALE.pdf
  101. Thirukumaran, R.; Anu Priya, V. K.; Krishnamoorthy, S.; Ramakrishnan, P.; Moses, J. A.; Anandharamakrishnan, C. Resource Recovery from Fish Waste: Prospects and the Usage of Intensified Extraction Technologies. Chemosphere 2022, 299, 134361. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.134361
  102. Tinrat, S.; Sila-Asna, M. Optimization of Gelatin Extraction and Physico-Chemical Properties of Fish Skin and Bone Gelatin: Its Application to Panna Cotta Formulas. Curr. Res. Nutr. Food Sci. 2017, 5 (3), 263–273. https://doi.org/10.12944/CRNFSJ.5.3.11
  103. Tkaczewska, J., Morawska, M., Kulawik, P., & Zając, M. (2018). Characterization of carp (Cyprinus carpio) skin gelatin extracted using different pretreatments method. Food Hydrocolloids, 81, 169–179. https://doi.org/10.1016/j.foodhyd.2018.02.048
  104. Usman, M., Sahar, A., Inam‐Ur‐Raheem, M., Ur Rahman, U., Sameen, A., & Aadil, R. M. (2021). Gelatin Extraction from Fish Waste and Potential Applications in Food Sector. International Journal of Food Science & Technology, 0–2. https://doi.org/10.1111/ijfs.15286
  105. Valcarcel, J.; Hermida-Merino, C.; Piñeiro, M. M.; Hermida-Merino, D.; Vázquez, J. A. Extraction and Characterization of Gelatin from Skin By-Products of Seabream, Seabass and Rainbow Trout Reared in Aquaculture. Int. J. Mol. Sci. 2021, 22 (22). https://doi.org/10.3390/ijms222212104
  106. Valcarcel, J.; Fraguas, J.; Hermida-Merino, C.; Hermida-Merino, D.; Piñeiro, M. M.; Vázquez, J. A. Production and Physicochemical Characterization of Gelatin and Collagen Hydrolysates from Turbot Skin Waste Generated by Aquaculture Activities. Mar. Drugs 2021, 19 (9). https://doi.org/10.3390/md19090491
  107. Wang, X.; Bai, Z.; Zheng, M.; Yue, O.; Hou, M.; Cui, B.; Su, R.; Wei, C.; Liu, X. Engineered Gelatin-Based Conductive Hydrogels for Flexible Wearable Electronic Devices: Fundamentals and Recent Advances. J. Sci. Adv. Mater. Devices 2022, 7 (3), 100451. https://doi.org/10.1016/j.jsamd.2022.100451
  108. Wang, Z. teng; Yang, Y. C.; Zeng, S. sheng; Arowo, M.; Zhang, X. Q.; Zheng, B. de; Zhang, N.; Ye, J.; Xiao, M. T. Treatment of Organic Wastewater by Ozone in a Continuous Rotating Solid Foam Stirrer Tank. Chem. Eng. Process. - Process Intensif. 2022, 174 (December 2021), 108866. https://doi.org/10.1016/j.cep.2022.108866
  109. Wu, W.; Xu, J.; Yang, L.; Yang, M.; Zhang, T.; Wang, X.; Zhong, J. Self-Assembled Hydrolyzed Gelatin Nanoparticles from Silver Carp Spine Bones for Pickering Emulsion Stabilization. Food Biosci. 2022, 48 (December 2021), 101735. https://doi.org/10.1016/j.fbio.2022.101735
  110. Xu, B.; Azam, S. M. R.; Feng, M.; Wu, B.; Yan, W.; Zhou, C.; Ma, H. Application of Multi-Frequency Power Ultrasound in Selected Food Processing Using Large-Scale Reactors: A Review. Ultrason. Sonochem. 2021, 81, 105855. https://doi.org/10.1016/j.ultsonch.2021.105855
  111. Xu, M.; Wei, L.; Xiao, Y.; Bi, H.; Yang, H.; Du, Y. Physicochemical and Functional Properties of Gelatin Extracted from Yak Skin. Int. J. Biol. Macromol. 2017, 95, 1246–1253. https://doi.org/10.1016/j.ijbiomac.2016.11.020
  112. Yang, X. R., Zhao, Y. Q., Qiu, Y. T., Chi, C. F., & Wang, B. (2019). Preparation and Characterization of Gelatin and Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna (Katsuwonus pelamis) Bone Stimulated by in vitro Gastrointestinal Digestion. Marine Drugs, 17(2). https://doi.org/10.3390/md17020078
  113. Yang, M.; Yang, L.; Xu, J.; Nie, Y.; Wu, W.; Zhang, T.; Wang, X.; Zhong, J. Comparison of Silver Carp Fin Gelatins Extracted by Three Types of Methods: Molecular Characteristics, Structure, Function, and Pickering Emulsion Stabilization. Food Chem. 2022, 368 (July 2021), 130818. https://doi.org/10.1016/j.foodchem.2021.130818
  114. Yang, L.; Yang, M.; Xu, J.; Nie, Y.; Wu, W.; Zhang, T.; Wang, X.; Zhong, J. Structural and Emulsion Stabilization Comparison of Four Gelatins from Two Freshwater and Two Marine Fish Skins. Food Chem. 2022, 371 (September 2021), 131129. https://doi.org/10.1016/j.foodchem.2021.131129
  115. Zeb, B. S.; MAHMOOD, Q.; PERVEZ, A. Anaerobic Wastewater Treatment , Process Performance and Optimization. Journal- Chem. Soc. Pakistan 2013, 35 (FEBRUARY 2013), 217–232
  116. Zhang, Z.; Bai, G.; Xu, D.; Cao, Y. Effects of Ultrasound on the Kinetics and Thermodynamics Properties of Papain Entrapped in Modified Gelatin. Food Hydrocoll. 2020, 105 (11), 105757. https://doi.org/10.1016/j.foodhyd.2020.105757
  117. Zhang, Y.; Dutilleul, P.; Li, C.; Simpson, B. K. Alcalase-Assisted Production of Fish Skin Gelatin Rich in High Molecular Weight (HMW) Polypeptide Chains and Their Characterization for Film Forming Capacity. Lwt 2019, 110 (October 2018), 117–125. https://doi.org/10.1016/j.lwt.2018.12.012
  118. Zhang, T.; Sun, R.; Ding, M.; Tao, L.; Liu, L.; Tao, N.; Wang, X.; Zhong, J. Effect of Extraction Methods on the Structural Characteristics, Functional Properties, and Emulsion Stabilization Ability of Tilapia Skin Gelatins. Food Chem. 2020, 328 (May), 127114. https://doi.org/10.1016/j.foodchem.2020.127114
  119. Zhang, Y.; Sun, Q.; Liu, S.; Wei, S.; Xia, Q.; Ji, H.; Deng, C.; Hao, J. Extraction of Fish Oil from Fish Heads Using Ultra-High Pressure Pre-Treatment Prior to Enzymatic Hydrolysis. Innov. Food Sci. Emerg. Technol. 2021, 70 (March), 102670. https://doi.org/10.1016/j.ifset.2021.102670
  120. Zhang, M.; Tashiro, Y.; Ishida, N.; Sakai, K. Application of Autothermal Thermophilic Aerobic Digestion as a Sustainable Recycling Process of Organic Liquid Waste: Recent Advances and Prospects. Sci. Total Environ. 2022, 828, 154187. https://doi.org/10.1016/j.scitotenv.2022.154187

Last update:

No citation recorded.

Last update:

No citation recorded.