The Effect of Solid-State Anaerobic Disgestion (Ss-Ad) and Liquid Anaerobic Disgestion (L-Ad) Method in Biogas Production of Rice Husk

Budiyono Budiyono -  Department of Chemical Engineering, University of Diponegoro, Indonesia
*Siswo Sumardiono -  Department of Chemical Engineering, University of Diponegoro, Indonesia
Fadillah Fathir Mahmud Fofana -  Department of Chemical Engineering, University of Diponegoro, Indonesia
Ihwan Fauzi -  Department of Chemical Engineering, University of Diponegoro, Indonesia
Agus Hadiyarto -  Department of Chemical Engineering, University of Diponegoro, Indonesia
Received: 7 Jan 2019; Revised: 15 Jan 2019; Accepted: 28 Jan 2019; Published: 30 Jan 2019; Available online: 30 Jan 2019.
Open Access Copyright 2019 Journal of Vocational Studies on Applied Research

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Article Info
Section: Articles
Language: EN
Full Text:
Supp. File(s):
The Effect of Solid-State Anaerobic Disgestion (Ss-Ad) and Liquid Anaerobic Disgestion (L-Ad) Method in Biogas Production of Rice Husk
Subject
Type Other
  Download (737KB)    Indexing metadata
Statistics: 115 11
Abstract
Rice husk is one of the agricultural waste from rice crop residue which has high potential to be processed into biogas. The purpose of this research is to study the effect of solid state anaerobic digestion and liquid anaerobic digestion on biogas production from rice husk waste. The anaerobic digestion laboratory scale used in this experiment is operated in a batch system and at room temperature. This method is added with chemical and biological pretreatment that was NaOH and microbial consortium. Total solid (TS) was varied from 5%, 7%, 9%, 11% which is L-AD and 17%, 19%, 21%, 23% are SS-AD. Biogas results were measured using the water displacement method every two days to determine daily production. The results showed that with the addition of NaOH the total volume of biogas obtained by L-AD method (TS 9%) and SS-AD (TS 23%) were 1254 ml and 1397 ml. Production of biogas per unit of TS for L-AD method is 46,44 ml / grTS and for SS-AD is 20,246 ml / grts, while biogas production per reactor volume unit for L-AD method is 6,26 ml / ml reactor and for SS-AD method is 4.64 ml / ml reactor. The kinetics constant of biogas production with L-AD method obtained A, U, and λ respectively were 50,53 ml / grTS, 1.23ml / grTS.day, 11,71 day, while for SS-AD method obtained A, U , and λ respectively 21.07 ml / grTS, 0.6 ml / grTS.day, 6.2 days.

Note: This article has supplementary file(s).

Keywords
biogas; pretreatment; SS-AD; L-AD; rice husk

Article Metrics:

  1. Kusdiana, D. 2008. Kondisi Riil Kebutuhan Energi di Indonesia dan Sumber-Sumber Energi Alternatif Terbarukan, Indonesia.
  2. Kharisma, Putra. 2011. Pengaruh Program Konversi Minyak Tanah Ke Gasterhadap Pedagang Kecil Di Kelurahan Padang Bulan Medan.Universitas Sumatera Utara Medan
  3. Panpong, K., Srisuwan, G., O-Thong, S., & Kongjan, P. (2014). Anaerobic Co Disgetion of Canned Seafood wastewater with Glycerol Waste for enhanced Biogas Production. Enery Procedia 52, 328-336.
  4. Al Hasibi, R.A. 2010. Peran Sumber Energi Terbarukan dalam Penyediaan Energi Listrik dan Penurunan Emisi CO2 di Provinsi Daerah Istimewa Yogyakarta. Jurnal Ilmiah Semesta Teknika, Vol. 13, No. 2, 155-164.
  5. Purba, Noir P. 2014. Variabilitas Angin dan Gelombang Laut sebagai Energi Terbarukan di Pantai Selatan Jawa Barat. Jurnal Akuatika Vol. V No. 1/ Maret 2014 (8-15) ISSN 0853-2532.
  6. Warsito, Suciyati, S.W., Wahyudi, D., Khoiron, W. 2011. Realisasi dan Analisis Sumber Energi Baru Terbarukan Nanohidro dari Aliran Air Berdebit Kecil. Jurnal Material dan Energi Indonesia Vol. 01, No. 01 (2011) 15-21.
  7. Antizar, L.B. and Turrion, G.J.L. 2008. Second-generation Biofuels and Local Bioenergy Systems. Biofuels Bioproducts dan Biorefining, Vol. 2(5): 455-69
  8. Junfeng, L. and Runqing, H. 2003. Sustainable Biomass Production For Energy In China. Biomass and Bioenergy Vol. 25(5):483-99.
  9. Budiyono, Syaichurrozi, I., & Sumardiono, S. 2013. Biogas Production From Bioethanol Waste: The Effect Of Ph And Urea Addition To Biogas Produstion Rate. Waste Tech, 1-5.
  10. Fang, C., Boe, k., & Angelidaki, I. (2011). Anaerobic co digestion of desurgared molasses with cow manure; focusing on sodium and potassium inhibition. Bioresource Technology, 102, 1005-1011
  11. Deublein, D. and Steinhauser, A. 2008. Biogas from Waste and Renewable Resource. Wiley-VCH Verlag GmbH dan Co. KGaA ,Weinheim. Dhouib, A., Ellouz, M., Aloui, F., Sayadi, S. 2006
  12. Bruni, E., Jensen, A.P., Angelidaki, I., (2010). Comparative study of mechanical,hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. J Bioresour Technol Vol. 101:8713-7.
  13. Li, Y., Park, S.Y., Zhu, J. 2011a. Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15(1), 821-826.
  14. Tuesorn, S. Wong, W.S. Champreda, V. (2013). Enhancement of biogas production from swine manure by a lignocellulolytic microbial consortium. Bioresource Technology, 144, pp.579–586.
  15. Zhang Q, He J, Tian M, Mao Z, Tang L, Zhang J, et al.2011. Enhancement of methane production from cassava residues by biological pretreatment using a con-structed microbial consortium. Bioresour Technol,102, 8899-906
  16. Sunarso, & Sumardiono, S. (2012). Pengembangan teknologi biodigester anaerobik untuk mempercepat produksi biogas dari limbah tapioka dan limbah peternakan. Semarang: Universitas Diponegoro
  17. Hosseinnia, A., Hashtroudi, M.S., Banifatemi, M., (2007). Surfactant removal. Water and Wastewater Asia pp. 52-5.
  18. Chen, X., Yan, W., Sheng, K., Sanati, M. 2014. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste. Bioresource Technology, 154, 215-221.
  19. Li, H., Saeed, A., Jahan, M.S., Ni, Y., van Heiningen, A. 2010. Hemicellulose Removal from Hardwood Chips in the Pre-Hydrolysis Step of the Kraft-Based Dissolving Pulp Production Process. Journal of Wood Chemistry and Technology, Volume 30, Issue 1, pages 48-60.
  20. Monlau, F., Barakat, A., Steyer, J.P., Carrere, H., (2012). Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour Technol Vol. 102:241-7.
  21. Teghammar, A., Yngvesson, J., Lundin, M., Taherzadeh, M.J., Horvath, I.S., (2010). Pretreatment of paper tube residuals for improved biogas production. Bioresour Technol Vol. 101:1206-12
  22. Michalska, K., Miazek, K., Krzystek, L., Ledakowicz S., (2012). Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresour Technol 2012;119:72-8.
  23. Ni’mah, L., (2014). Biogas From Solid Waste Of Tofu Production And Cow Manure Mixture: Composition Effect. Chemica Vol 1 No.1 :1-9.
  24. Jha, A.K., Li, J., Zhang, L., Ban, Q., Jin, Y. 2013. Comparison between wet and dry anaerobic digestions of cow dung under mesophilic and thermophilic conditions. Advances in Water
  25. Brown, D., Li, Y. 2013. Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresource Technology, 127,275-280.
  26. Sheets, J.P., Ge, X, Li, Y. 2015. Effect of limited air exposure and comparative performance between thermopihilic and mesophilic solid-state anerobic digestion of switchgrass. Bioresource Technology, 180, 296-303.
  27. Ghatak, M.D., Mahanta, P., (2014). Kinetic assessment of biogas production fromlignocellulosic biomasses. International Journal of Engineering and AdvancedTechnology (IJEAT) ISSN: 2249 – 8958, Volume-3, Issue-5.