skip to main content

The Effect of Liprotide-Encapsulated Vitamin D3 on MDA and SOD in Rats Deficient Vitamin D and Calcium

1Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Indonesia

2Department of Medical Biology and Biochemistry, Faculty of Medicine, Universitas Diponegoro, Indonesia

3Departement of Pharmacology and Therapy, Faculty of Medicine, Universitas Diponegoro, Indonesia

4 Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Indonesia

5 Department of Nutrition Science, Faculty of Public Health, Universitas Ahmad Dahlan, Indonesia

View all affiliations
Received: 27 Oct 2023; Revised: 13 Mar 2023; Accepted: 7 Feb 2023; Available online: 30 Apr 2023; Published: 29 Apr 2023.
Open Access Copyright (c) 2023 Journal of Biomedicine and Translational Research
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Background: Vitamin D deficiency is frequently correlated with elevated malondialdehyde (MDA) levels and decreased superoxide dismutase (SOD) activity. Several studies have demonstrated that vitamin Dcan reverse intracellular oxidative stress. However, vitamin D is prone to deterioration and instability. Liprotides contain lipids and proteins that can prevent vitamin D from oxidating.

Objective: This study aims to investigate the effects of liprotide-encapsulated vitamin D3 on MDA concentrations and SOD activity in calcium and vitamin D-deficient rat models.

Methods: The experimental post-test-only control group study used 24 Wistar rats randomly in 4 groups. Groups K(-), K(+), and P were fed a vitamin D and calcium-depleted AIN-93M diet for 14 days. Standard feed AIN-93M was received by normal groups (KN). Groups K- were deficient rats in vitamin D and calcium without intervention. The groups of  K+ and P were given vitamin D3 (180 IU) which was non-encapsulated and liprotide-encapsulated for 28 days.The SOD activity was quantified with Superoxide Dismutase (SOD) Activity Assay Kit, while MDA levels were determined using Thiobarbituric Acid Reactive Substance (TBARS) method. The statistical analysis used One-way ANOVA test with Least Significant Difference follow-up test.

Results: The MDA levels and SOD activity in the K+ and P groups had significant differences (p<0.05) against the control group. Liprotides-encapsulated vitamin D3 significantly reduced MDA levels and enhanced SOD activity compared to non-encapsulated in rats with a deficiency in vitamin D and calcium.

Conclusion: Liprotide-encapsulated vitamin D3 has the potential to increase SOD activity and decrease MDA levels.


Note: This article has supplementary file(s).

Fulltext View|Download |  Cover Letter
Cover Letter Vitamin D3 encapsulated liprotide on MDA levels and SOD activity
Subject Vitamin D3;nanoencapsulation; liprotides; MDA; SOD
Type Cover Letter
  Download (14KB)    Indexing metadata
Ethical Clearance Gemala Anjani
Subject Vitamin D3;nanoencapsulation; liprotides; MDA; SOD
Type Other
  View (226KB)    Indexing metadata
 Copyright Transfer Agreement
CTA Gemala Anjani JBTR
Subject Copyright Transfer Agreement
Type Copyright Transfer Agreement
  Download (346KB)    Indexing metadata
Keywords: Vitamin D3; nanoencapsulation; liprotides; MDA; SOD

Article Metrics:

  1. Palacios C, Gonzalez L. Is vitamin D deficiency a major global public health problem? J Steroid Biochem Mol Biol. 2014;144(PART A):138-145. doi: 10.1016/j.jsbmb.2013.11.003
  2. Chin KY, Ima-Nirwana S, Ibrahim S, Mohamed IN, Ngah WZW. Vitamin D status in Malaysian men and its associated factors. Nutrients. 2014;6(12):5419-5433. doi: 10.3390/nu6125419
  3. Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18(2):153-165. doi: 10.1007/s11154-017-9424-1
  4. Green TJ, Skeaff CM, Rockell JEP, et al. Vitamin D status and its association with parathyroid hormone concentrations in women of child-bearing age living in Jakarta and Kuala Lumpur. Eur J Clin Nutr. 2008;62(3):373-378. doi: 10.1038/sj.ejcn.1602696
  5. Sari DK, Harun Alrasyid D, Nurlndrawaty L, Zulkif L. Occurrence of vitamin D deficiency among women in North Sumatera, Indonesia. Malays J Nutr. 2014;20(1):63-70
  6. Stavenuiter AWD, Arcidiacono MV, Ferrantelli E, et al. A novel rat model of vitamin D deficiency: Safe and rapid induction of vitamin D and calcitriol deficiency without hyperparathyroidism. Biomed Res Int. 2015;2015. doi: 10.1155/2015/604275
  7. Hyppönen E, Läärä E, Reunanen A, Järvelin MR, Virtanen SM. Intake of vitamin D and risk of type 1 diabetes: A birth-cohort study. Lancet. 2001;358(9292):1500-1503. doi: 10.1016/S0140-6736(01)06580-1
  8. Mokhtari Z, Hekmatdoost Z, Nourian M. Antioxidant Efficacy of Vitamin D. Vol 5.; 2017.
  9. Asghari S, Hamedi-Shahraki S, Amirkhizi F. Vitamin D status and systemic redox biomarkers in adults with obesity. Clin Nutr ESPEN. 2021;45:292-298. doi: 10.1016/j.clnesp.2021.07.032
  10. Colombo M, Sangiovanni A. Vitamin D deficiency and liver cancer: More than just an epidemiological association? Hepatology. 2014;60(4):1130-1132. doi: 10.1002/hep.27178
  11. Judd SE, Tangpricha V. Vitamin D deficiency and risk for cardiovascular disease. Am J Med Sci. 2009;338(1):40-44. doi: 10.1097/MAJ.0b013e3181aaee91
  12. Sanz R, Mazzei L, Santino N, Ingrasia M, Manucha W. Vitamin D-mitochondria cross-talk could modulate the signalling pathway involved in hypertension development: a translational integrative overview. Clínica e Investig en Arterioscler (English Ed. 2020;32(4):144-155. doi: 10.1016/j.artere.2020.02.003
  13. Liu Z, Ren Z, Zhang J, et al. Role of ROS and nutritional antioxidants in human diseases. Front Physiol. 2018;9(MAY):1-14. doi: 10.3389/fphys.2018.00477
  14. Chatterjee S. Oxidative Stress, Inflammation, and Disease. Philadelphia: Elsevier Inc.; 2016. doi: 10.1016/B978-0-12-803269-5.00002-4
  15. Dzik KP, Kaczor JJ. Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state. Eur J Appl Physiol. 2019;119(4):825-839. doi: 10.1007/s00421-019-04104-x
  16. Avelar TMT, Storch AS, Castro LA, Azevedo GVMM, Ferraz L, Lopes PF. Oxidative stress in the pathophysiology of metabolic syndrome: Which mechanisms are involved? J Bras Patol e Med Lab. 2015;51(4):231-239. doi: 10.5935/1676-2444.20150039
  17. Frederiks WM, Bosch KS. Localization of superoxide dismutase activity in rat tissues. Free Radic Biol Med. 1997;22(1-2):241-248. doi: 10.1016/S0891-5849(96)00328-0
  18. Fridovich I. The biology of oxygen radicals. Science (80- ). 1978;201(4359):875-880. doi: 10.1126/science.210504
  19. Kiely M, Black LJ. Dietary strategies to maintain adequacy of circulating 25-hydroxyvitamin D concentrations. Scand J Clin Lab Invest. 2012;72(SUPPL. 243):14-23. doi: 10.3109/00365513.2012.681893
  20. Högler W, Munns CF. Rickets and osteomalacia: A call for action to protect immigrants and ethnic risk groups. Lancet Glob Heal. 2016;4(4):e229-e230. doi: 10.1016/S2214-109X(16)00061-9
  21. Combs GF, James P. McClung. The Vitamins Fundamental Aspects in Nutrition and Health. Fifth. London: Elsevier Inc.; 2017
  22. Verkaik-Kloosterman J, Seves SM, Ocké MC. Vitamin D concentrations in fortified foods and dietary supplements intended for infants: Implications for vitamin D intake. Food Chem. 2017;221:629-635. doi: 10.1016/j.foodchem.2016.11.128
  23. Tripkovic L, Lambret H, Hart K, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr. 2012;95(6):1357-1364. doi: 10.3945/ajcn.111.031070.1
  24. Pateiro M, Gómez B, Munekata PES, et al. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules. 2021;26(6). doi: 10.3390/molecules26061547
  25. Jannasari N, Fathi M, Moshtaghian SJ, Abbaspourrad A. Microencapsulation of vitamin D using gelatin and cress seed mucilage: Production, characterization and in vivo study. Int J Biol Macromol. 2019;129:972-979. doi: 10.1016/j.ijbiomac.2019.02.096
  26. Park SJ, Garcia C V, Shin GH, Kim JT. Development of nanostructured lipid carriers for the encapsulation and controlled release of vitamin D3. Food Chem. 2017;225:213-219. doi: 10.1016/j.foodchem.2017.01.015
  27. Pedersen JN, Frislev HS, Pedersen JS, Otzen DE. Using protein-fatty acid complexes to improve vitamin D stability. J Dairy Sci. 2016;99(10):7755-7767. doi: 10.3168/jds.2016-11343
  28. Diarrassouba F, Garrait G, Remondetto G, Alvarez P, Beyssac E, Subirade M. Improved bioavailability of vitamin D3 using a β-lactoglobulin-based coagulum. Food Chem. 2015;172:361-367. doi: 10.1016/j.foodchem.2014.09.054
  29. Reeves PG, Suppl M. Symposium : Animal Diets for Nutritional and Toxicological Research Components of the AIN-93 Diets as Improvements in the AIN-76A Diet 1 , 2. Exp Biol. 1997;127(March):838-841
  30. Heaney RP, Davies KM, Chen TC, Holick MF, Janet Barger-Lux M. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr. 2003;77(1):204-210. doi: 10.1093/ajcn/77.1.204
  31. Bruck R, Schey R, Aeed H, Hochman A, Genina O, Pines M. A protective effect of pyrrolidine dithiocarbamate in a rat model of liver cirrhosis. Liver Int. 2004;24(2):169-176. doi: 10.1111/j.1478-3231.2004.00900.x
  32. Wee CL, Mokhtar SS, Banga Singh KK, Rasool AHG. Vitamin D deficiency attenuates endothelial function by reducing antioxidant activity and vascular eNOS expression in the rat microcirculation. Microvasc Res. 2021;138(July):104227. doi: 10.1016/j.mvr.2021.104227
  33. Choi MJ, Jung YJ. Effects of taurine and vitamin D on antioxidant enzyme activity and lipids profiles in rats fed diet deficient calcium. Adv Exp Med Biol. 2017;975:1081-1092. doi: 10.1007/978-94-024-1079-2_86
  34. Hubel CA. Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med. 1999;222(3):222-235. doi: 10.1046/j.1525-1373.1999.d01-139.x
  35. Gemcioglu E, Baser S, Yilmaz Cakmak N, et al. Assessing Oxidative Stress by Thiol/Disulfide Homeostasis Among Vitamin D-Deficient Patients. Cureus. 2021;13(12):1-7. doi: 10.7759/cureus.20400
  36. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84. doi: 10.1016/j.biocel.2006.07.001
  37. Wimalawansa SJ. Vitamin D deficiency: Effects on oxidative stress, epigenetics, gene regulation, and aging. Biology (Basel). 2019;8(2):1-15. doi: 10.3390/biology8020030
  38. Bertero E, Maack C. Calcium signaling and reactive oxygen species in Mitochondria. Circ Res. 2018;122(10):1460-1478. doi: 10.1161/CIRCRESAHA.118.310082
  39. Berridge MJ. Vitamin D deficiency accelerates ageing and age-related diseases: a novel hypothesis. J Physiol. 2017;595(22):6825-6836. doi: 10.1113/JP274887
  40. Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: Basic mechanisms, functional effects, and pathological considerations. Am J Physiol - Regul Integr Comp Physiol. 2007;292(1):18-36. doi: 10.1152/ajpregu.00327.2006
  41. Pervaiz S, Bellot GL, Lemoine A, Brenner C. Redox Signaling in the Pathogenesis of Human Disease and the Regulatory Role of Autophagy. Vol 352. 1st ed. Elsevier Inc.; 2020. doi: 10.1016/bs.ircmb.2020.03.002
  42. Chen CY, Blumberg JB. Use of biomarkers of oxidative stress in human studies. In: Oxidative Stress, Disease and Cancer. Vol 134. ; 2006:1045-1076. doi: 10.1142/9781860948046_0038
  43. Halliwell B. Free Radicals and Other Reactive Species in Disease. eLS. 2015;(Iii):1-9. doi: 10.1002/9780470015902.a0002269.pub3
  44. Halliwell B, Chirico S. Lipid peroxidation: significance and its mechanism. Am J Clin Nutr. 1993;57(February):715-725
  45. Hauck AK, Bernlohr DA. Thematic review series: Lipotoxicity: Many roads to cell dysfunction and cell death: Oxidative stress and lipotoxicity. J Lipid Res. 2016;57(11):1976-1986. doi: 10.1194/jlr.R066597
  46. Doǧan M, Cesur Y, Doǧan ŞZ, Kaba S, Bulan K, Cemek M. Oxidant/antioxidant system markers and trace element levels in children with nutritional rickets. J Pediatr Endocrinol Metab. 2012;25(11-12):1129-1139. doi: 10.1515/jpem-2012-0153
  47. Wu C, Lu B, Wang Y, Jin C, Zhang Y, Ye J. Effects of dietary vitamin D3 on growth performance, antioxidant capacities and innate immune responses in juvenile black carp Mylopharyngodon piceus. Fish Physiol Biochem. 2020;46(6):2243-2256. doi: 10.1007/s10695-020-00876-8
  48. Zhang H, Liu Y, Fang X, et al. Vitamin D3Protects Mice from Diquat-Induced Oxidative Stress through the NF- κ B/Nrf2/HO-1 Signaling Pathway. Oxid Med Cell Longev. 2021;2021. doi: 10.1155/2021/6776956
  49. Adelani IB, Ogadi EO, Onuzulu C, Rotimi OA, Maduagwu EN, Rotimi SO. Dietary vitamin D ameliorates hepatic oxidative stress and inflammatory effects of diethylnitrosamine in rats. Heliyon. 2020;6(9):e04842. doi: 10.1016/j.heliyon.2020.e04842
  50. Liu Y, Hyde AS, Simpson MA, Barycki JJ. Emerging regulatory paradigms in glutathione metabolism. Adv Cancer Res. 2014;122(402):69-101. doi: 10.1016/B978-0-12-420117-0.00002-5
  51. Berridge MJ. Vitamin D, reactive oxygen species and calcium signalling in ageing and disease. Philos Trans R Soc B Biol Sci. 2016;371(1700):20150434. doi: 10.1098/rstb.2015.0434
  52. Nakai K, Fujii H, Kono K, et al. Vitamin D activates the Nrf2-keap1 antioxidant pathway and ameliorates nephropathy in diabetic rats. Am J Hypertens. 2014;27(4):586-595. doi: 10.1093/ajh/hpt160
  53. Berridge MJ. Vitamin d deficiency: Infertility and neurodevelopmental diseases (attention deficit hyperactivity disorder, autism, and schizophrenia). Am J Physiol - Cell Physiol. 2018;314(2):C135-C151. doi: 10.1152/ajpcell.00188.2017
  54. Berridge MJ. Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun. 2015;460(1):53-71. doi: 10.1016/j.bbrc.2015.01.008
  55. Zhu CG, Liu YX, Wang H, et al. Active form of vitamin D ameliorates non-alcoholic fatty liver disease by alleviating oxidative stress in a high-fat diet rat model. Endocr J. 2017;64(7):663-673. doi: 10.1507/endocrj.EJ16-0542
  56. Diarrassouba F, Garrait G, Remondetto G, Alvarez P, Beyssac E, Subirade M. Food protein-based microspheres for increased uptake of Vitamin D3. Food Chem. 2015;173:1066-1072. doi: 10.1016/j.foodchem.2014.10.112
  57. Fang B, Zhang M, Tian M, Ren FZ. Self-assembled β-lactoglobulin-oleic acid and β-lactoglobulin-linoleic acid complexes with antitumor activities. J Dairy Sci. 2015;98(5):2898-2907. doi: 10.3168/jds.2014-8993
  58. Allen J, Lovett MD. Calcium Chloride and Vitamin D Bioavailability from Fortified Beverages in Wistar Rats. Int J Food Nutr Sci. 2014;1(1):1-7. doi: 10.15436/2377-0619.14.002

Last update:

No citation recorded.

Last update:

No citation recorded.