skip to main content

Identifikasi Potensi Ocean Thermal Energy Conversion (OTEC) di Selat Makassar

*Fadhil karunia hammad  -  Departemen Oseanografi, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia
Baskoro Rochaddi scopus  -  Departemen Oseanografi, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia
Purwanto Purwanto scopus  -  Departemen Oseanografi, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia
Harjo Susmoro  -  Pusat Hidro-Oseanografi Angkatan Laut, Indonesia

Citation Format:
Abstract
Ocean Thermal Energy Conversion (OTEC) adalah salah satu dari banyak sumber energi terbarukan dari lautan yang bisa menjadi solusi untuk energi hijau. Selat Makassar merupakan salah satu wilayah perairan yang sangat berpotensi untuk pembangkit OTEC. Hal tersebut karena Selat Makassar memenuhi kaidah OTEC, dimana termasuk kategori laut dalam dan berada di equator yang memiliki suhu permukaan yang hangat dan konstan, serta memiliki selisih suhu sebesar 20℃ antara permukaan laut dan laut dalam dengan kedalaman 1000 m. Tujuan dari penelitian ini adalah untuk mengetahui potensi energi OTEC, titik potensial instalasi pembangkit OTEC, dan daya yang dihasilkan di perairan Selat Makassar Utara. Analisa data menggunakan verifikasi metode Root Mean Square Error (RMSE) dan efisiensi OTEC dihitung melalui persaman efisiensi carnot. Besar daya OTEC dihitung dengan asumsi pembangkit OTEC 100 MW menghasilkan Pg (daya kotor) dan Pnet (daya bersih). Hasil penelitian menunjukkan Selat Makassar memiliki potensi energi OTEC terutama pada stasiun 2 hingga stasiun 17 dengan rata-rata selisih temperatur 23,57℃ serta efisiensi carnot rata-rata sebesar 7,7%. Menghasilkan rata-rata daya kotor sebesar 177,66 MW dan daya bersih sebesar 13,85 MW. Titik lokasi yang berpotensi dalam instalasi pembangkit OTEC berada di stasiun 2 dengan koordinat 01°01'51"N-120°13'21"E berupa platform pembangkit floating plants. Jarak dari pantai sepanjang 18,63 km. Memiliki selisih temperatur laut permukaan dan laut dalam 23,3℃ serta efisiensi carnot sebesar 7,7% sehingga menghasilkan daya bersih 13,40 MW.
Fulltext View|Download
Keywords: Daya; Efisiensi Carnot; OTEC; Selat Makassar Utara
Funding: Pusat Hidrografi-Oseanografi TNI AL

Article Metrics:

  1. Adrian, R.S. 2015. Potential Ocean Thermal Energy Conversion (OTEC) in Bali. Renewable Energy and Energy Conversion Conference and Exhibition (The 2nd) Indo EBTKE-CONEX, ISSN 2413-5453., Vol. 1:5-12
  2. Amano, M. and Tanaka, T. 2006. Open-Cycle OTEC Systems with Freshwater Product. Effects of Non-condensable Gases on Performance of Condenser Electrical Engineering in Japan, Vol. 154:46-54
  3. Anne, K. 2008. Ocean Thermal Energy Conversion. Guelph Engineering Journal, University of Guelph, Ontario, NIG 2WI, ISSN: 1916-1107., Vol. 17-23
  4. Avery, W. H. and Wu, Chih. 1994. Renewable Energy from the Ocean: a guide to OTEC. Oxford University Press, Inc. New York, 437 p
  5. Aydin, H. 2013. Performance Analysis Of A Closedcycle Ocean Thermal Energy Conversion System With Solar Preheating And Superheating. Deep Ocean Water Application Research Center, Vol 72:154-163
  6. Bleck, R. 2002. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modelling, Vol. 4:55-88
  7. Charlier, R. H. 2003. Sustainable co-generation from the tides: A review. Renewable and Sustainable Energy Reviews 7(3), Free University of Brussels, Belgium, pp. 187-213
  8. Charlier, R. H., and Justus J. R. 1993. Ocean Energies: Environmental, Economic and Technological Aspects of Alternative Power Sources. 1sted., Elsevier Oceanography Series, Amsterdam, The Netherlands, 534 p
  9. Comfort, C.M. 2011. Environmental assessment for ocean thermal energy conversion in Hawaii. Available data and a protocol for baseline monitoring. Hawaii Natural Energy Institute University of Hawaii at Manoa Honolulu, MTS, Vol. 9:39-48
  10. Daniel, T.H. 1994. Deep ocean water utilization at the natural energy laboratory of Hawaii authority. In: Proceeding of Oceanology International ’94. Hawaii, pp. 8-11
  11. Duxbury, A.B., Duxbury, A.C. and Sverdrup, K.A., 2002. Fundamentals of Oceanography. 4thed., McGraw Hill, New York, 344 p
  12. Etemadi, A. 2011. Electricity Generation by the Ocean Thermal Energy. Urnia University Technology. Elsevier Ltd, Science Direct, Vol. 12:36-43
  13. Fanny, O. Muslim, M. Faturachman, D. Buwono, A. 2016. Study of Ocean Thermal Energy Conversion (OTEC) Generation as Project of Power Plant in West Sumatera-Indonesia, International Journal of Systems Applications, Engineering & Development, Vol. 10:65-69
  14. Ilahude, A.G and A. Gordon. 1996. Thermocline Stratification Within the Indonesian Seas. J. Geophys. Res., Vol. 1(5):41-49
  15. James, H. 2017. An assessment of Florida’s Ocean Thermal Energy Conversion (OTEC) Resource. Renewable and Sustainable Energy Reviews. Elsevier Ltd, Science Direct, Vol. 6:83-91
  16. Jaswar Koto. 2016. Potential of Ocean Thermal Energy Conversion in Indonesia. International Journal of Environmental Research & Clean Energy, Vol. 4:1-7
  17. Lewis, A., S. Estefen, J. Huckerby, W. Musial, T. Pontes, J. Torres-Martinez. 2011. Ocean Energy. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, pp. 458-465
  18. Lopes, A. B., Harari, J. 2012. Use of recent geoid models to estimate mean dynamic topography and geostrophic currents in South Atlantic and Brazil Malvinas confluence. Brazilian Journal of Oceanography, Vol. 60(1):41-48
  19. Mega, L. and Syamsuddin. 2015. OTEC Potential in The Indonesian Seas. Conference and Exhibition Indonesia –New, Renewable Energy and Energy Conservation. Elsevier Ltd, Science Direct, Vol. 1(2):15-22
  20. Mignac, C. A. S. Tanajura, A. N Santana, L. N. Lima, and Xie. J. 2015. Argo Data Assimilation into HYCOM with an EnOI Method in the Atlantic Ocean. Ocean Sci. Discuss., Vol. 11(17):33–51
  21. Morales, A. D. 2014. Ocean Thermal Energy Resources in Colombia. Ocean thermal energy resources in ColombiaGrupo de Oceanografía e Ingeniería Costera. OCEANICOS, Universidad Nacional, Medellín, Colombia. Renewable Energy, Vol. 7:59-69
  22. Nihous, G. C. 2007. Preliminary Assessment of Ocean Thermal Energy Conversion Resources. ASME, Vol. 127:7-10
  23. Rahman, Y. 2008. OTEC : Ocean Thermal Energy Conversion. Institut Teknologi Bandung Press. Bandung, 216 hlm
  24. Ridho, B. 2017. Potential of 100 kW of Ocean Thermal Energy Conversion in Karangkelong, Sulawesi Utara, Indonesia. International Journal of Environmental Research & Clean Energy, ISOMAse, ISSN:2502-3888, Vol.5(1):18-21
  25. Sands, M. D. 1980. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis. Lawrence Berkeley National Laboratory, 222 p
  26. Solar Energy Research Institute. 1989. Ocean Thermal Energy Conversion An Overview. U.S Department of Energy, United States for America, SERI/SP-220-3024., 38 p
  27. Song, Y. Zhang, Y. Zhou. 2007. The Relationship Between The Thermocline and The Catch Rate of Thunnus obesus in The Tropical Areas of The Indian Ocean. In: IOTC Proceeding-WPTT-14
  28. Straatman, P.J.T., and van Stark, W.G.J.H.M. 2008. A new hybrid ocean thermal energy conversion – Offshore solar pond (OTEC-OSP) design: A cost Optimisation Approach, Solar Energy, Vol. 82:20-27
  29. Sugiyono. 2009. Metode Penelitian Kuantitatif, Kualitatif dan R&D. Alfabeta, Bandung, 380 hlm
  30. Syamsuddin, M. L. 2014. OTEC Potential in The Indonesian Seas. Conference and Exhibition Indonesia - New, Renewable Energy and Energy Conservation (The 3rd Indo-EBTKE ConEx 2014). Elsevier Ltd, Science Direct, Vol. 65:215-222
  31. Yamaguchi, T. 2003. Deep-Sea Water Suction Technology. Furukawa Review, Vol. 1(24):75-80.Yue, W. dan X. Huang. 2005. Distribution Characteristics of Phosphorus in Core Sediments From Zhujiang River Esstuary and Its Environmental Significance. Journal of Tropical Oceanography., 24 (1): 21-27
  32. Zhuang, W., X. Gao, Y. Zhang, Q. Xing, L. Tosi, S. Qin. 2014. Geochemical Characteristics Of Phosphorus In Surface Sediments Of Two Major Chinese Mariculture Areas : The Laizhou Bay And The Coastal Waters Of The Zhangzi Island. Marine Pollution Bulletin
  33. Zhou, F., X. Gao, H. Yuang, J. Song, C. T. A. Chen, H. K. Lui, Y. Zhang. 2016. Geochemical Forms and Seasonal Variations of Phosphorus In Surface Sediments of The Eat China Sea Shelf. Journal of Marine Systems

Last update:

No citation recorded.

Last update:

No citation recorded.