skip to main content

Effect of Winglets on Improving Wind Turbine Performance

*Sri Utami Handayani orcid scopus publons  -  Department of Industrial Technology, Vocational School, Diponegoro University, Indonesia
Open Access Copyright 2021 Journal of Vocational Studies on Applied Research under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract
Indonesia, with the longest coastline in the world, has enormous potential to develop large-scale wind energy. In wind turbines, the formation of a wake behind the wind turbine can reduce efficiency. It is estimated that the formation of a vortex tip behind the wind turbine blade can be reduced by adding a winglet. The main function of winglets attached to the blade is to reduce the effect of the wingtip vortices which are generated due to 3D spanwise flow that occurs because of the pressure non- equalization between the upper and lower blade surfaces. This paper aims to summarize the results of research on the effect of adding winglets to wind turbines.
Fulltext View|Download
Keywords: wind turbine, winglet, tip vortices, alternative energy, wake

Article Metrics:

  1. Tim Sekretaris Jenderal Dewan Energi Nasional, “Indonesia Energy Out Look 2019,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019
  2. C. L. Zhang, Z. H. Lai, M. Q. Li, and D. Yurchenko, “Wind energy harvesting from a conventional turbine structure with an embedded vibro-impact dielectric elastomer generator,” J. Sound Vib., vol. 487, 2020
  3. E. Martínez-Mendoza, L. A. Rivas-Tovar, E. Fernández-Echeverría, and G. Fernández-Lambert, “Social impact of wind energy in the Isthmus of Tehuantepec, Mexico, using Likert-fuzzy,” Energy Strateg. Rev., vol. 32, no. September 2019, 2020
  4. Kusch-Brandt, Renewables 2019 Global Status Report, vol. 8, no. 3. 2019
  5. H. P Dida, S. Suparman, and D. Widhiyanuriyawan, “Pemetaan Potensi Energi Angin di Perairan Indonesia Berdasarkan Data Satelit QuikScat dan WindSat,” J. Rekayasa Mesin, vol. 7, no. 2, pp. 95–101, 2016
  6. S. U. Handayani, “Karakterisasi Daya dan Pola Alira Turbin Angin Kecepatan Rendah dengan Winglet,” Program Pasca Sarjana Universitas Gadjah Mada, 2007
  7. D. H. Wood, “Maximum wind turbine performance at low tip speed ratio,” J. Renew. Sustain. Energy, vol. 7, no. 5, 2015
  8. S. Sunada, K. Ozaki, M. Tanaka, T. Yasuda, K. Yasuda, and K. Kawachi, “Airfoil characteristics at a low Reynolds number,” J. Flow Vis. Image Process., vol. 7, no. 3, pp. 207–215, 2000
  9. R. Kumar and P. Baredar, “Solidity Study and its Effects on the Performance of A Small Scale Horizontal Axis Wind Turbine,” Impending Power Demand Innov. Energy Paths, vol. 84, no. 8, pp. 290–297, 2015
  10. M. M. Duquette and K. D. Visser, “Numerical implications of solidity and blade number on rotor performance of horizontal-axis wind turbines,” J. Sol. Energy Eng. Trans. ASME, vol. 125, no. 4, pp. 425–432, 2003
  11. S. U. Handayani, “Penambahan Winglet untuk Meningkatkan Unjuk Kerja Turbin Angin pada Kecepatan Angin Rendah.pdf,” in Prosiding Seminar Nasional SNTTM, Universitas Syiah Kuala Banda Aceh, 2007
  12. T. Reports, “Experimental Studies of Wind Turbine Wakes Power Optimisation and Meandering Davide Medici,” no. December, 2005
  13. S. Nima, “The effect of unsteady flow on wind turbine wake development and noise generation Nima Sedaghatizadeh,” 2017
  14. S. U. Handayani, “Velocity Distribution of Low Velocity Wind Turbine with Winglet,” J. Tek. Gelagar, vol. 19, no. 02, 2008
  15. J. Johansen and N. N. Sorensen, “Numerical Analysis of Winglets on Wind Turbine Blades using CFD Numerical Analysis of Winglets on Wind Turbine Blades using CFD,” no. April, pp. 2–8, 2014
  16. M. Khaled, M. M. Ibrahim, H. E. Abdel Hamed, and A. F. AbdelGwad, “Investigation of a small Horizontal–Axis wind turbine performance with and without winglet,” Energy, vol. 187, p. 115921, 2019
  17. C. Papadopoulos, M. Schmid, P. Kaparos, D. Misirlis, and Z. Vlahostergios, “Numerical analysis and optimization of a winglet for a small horizontal wind turbine blade,” Chem. Eng. Trans., vol. 81, pp. 1321–1326, 2020

Last update:

No citation recorded.

Last update:

No citation recorded.