skip to main content

Perancangan Mikrogrid di Pulau Tunda Menggunakan Aplikasi HOMER Pro

*Arie Wibowo  -  Program Studi Program Profesi Insinyur, Fakultas Teknik, Universitas Diponegoro, Jl. Prof. Soedarto, SH, Kampus UNDIP Tembalang, Semarang, Indonesia 50275, Indonesia
Aris Triwiyatno  -  Program Studi Program Profesi Insinyur, Fakultas Teknik, Universitas Diponegoro, Jl. Prof. Soedarto, SH, Kampus UNDIP Tembalang, Semarang, Indonesia 50275, Indonesia
Yosua Alvin Adi Soetrisno  -  Program Studi Program Profesi Insinyur, Fakultas Teknik, Universitas Diponegoro, Jl. Prof. Soedarto, SH, Kampus UNDIP Tembalang, Semarang, Indonesia 50275, Indonesia
Received: 3 Sep 2024; Revised: 3 Oct 2024; Accepted: 7 Oct 2024; Available online: 14 Nov 2024; Published: 14 Nov 2024.

Citation Format:
Abstract

Sumber energi terbarukan, khususnya energi matahari, memiliki potensi besar untuk memenuhi permintaan energi di daerah terpencil yang jauh dari jaringan listrik yang ada. Artikel ini menyajikan penggunaan optimal energi matahari yang ditangkap oleh panel photovoltaic (PV), dikombinasikan dengan sistem penyimpanan baterai, konverter dan generator diesel untuk menyediakan listrik di Pulau Tunda, Banten, Indonesia. Simulasi sistem Mikrogrid dilakukan dengan menggunakan perangkat lunak HOMER Pro. Hasil optimal HOMER diurutkan berdasarkan Net Present Cost (NPC) terendah. Hasil simulasi HOMER menunjukkan bahwa konfigurasi sistem paling optimal terdiri dari generator diesel 130 kW, panel PV 500 kW, 75 rangkaian penyimpanan baterai dan konverter sistem 125 kW.

 

Kata kunci: Mikrogrid, PV, energi terbarukan, HOMER

Fulltext View|Download

Article Metrics:

  1. Babu, M. K., & Ray, P. 2023. Sensitivity analysis, optimal design, cost and energy efficiency study of a hybrid forecast model using HOMER pro. Journal of Engineering Research, 11(2), 100033
  2. Chisale, S. W., Eliya, S., & Taulo, J. 2023. Optimization and design of hybrid power system using HOMER pro and integrated CRITIC-PROMETHEE II approaches. Green Technologies and Sustainability, 1(1), 100005
  3. Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. 2019. The role of renewable energy in the global energy transformation. Energy strategy reviews, 24, 38-50
  4. Halicioglu, F., & Ketenci, N. 2018. Output, renewable and non-renewable energy production, and international trade: Evidence from EU-15 countries. Energy, 159, 995-1002
  5. Hashim, I. J. 2021. A new renewable energy index. In 2021 6th International Conference on Renewable Energy: Generation and Applications (ICREGA) (pp. 229-232). IEEE
  6. Khalil, L., Bhatti, K. L., Awan, M. A. I., Riaz, M., Khalil, K., & Alwaz, N. 2021. Optimization and designing of hybrid power system using HOMER pro. Materials Today: Proceedings, 47, S110-S115
  7. Mohammed, O. H., Amirat, Y., Benbouzid, M., & Tang, T. 2013. Hybrid generation systems planning expansion forecast: A critical state of the art review. In IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society (pp. 1668-1673). IEEE
  8. Pawar, N., & Nema, P. 2018. Techno-economic performance analysis of grid connected PV solar power generation system using HOMER software. In 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (pp. 1-5). IEEE
  9. Penava, I., Galijasevic, S., Muharemovic, A., & Penava, M. 2014. Optimal design and demonstrative application of standalone hybrid renewable energy system. In 2014 IEEE International Energy Conference (ENERGYCON) (pp. 960-967). IEEE
  10. Ross, S. 2015. Ebook: Fundamentals of Corporate Finance. McGraw Hill
  11. Sandeep, G., & Vakula, V. S. 2016. Optimal combination and sizing of a standalone hybrid power system using HOMER. In 2016 international conference on electrical, electronics, and optimization techniques (ICEEOT) (pp. 4141-4144). IEEE

Last update:

No citation recorded.

Last update:

No citation recorded.