skip to main content

Aplikasi Tensor Fase Data Magnetotellurik untuk Pemodelan Panas Bumi The Geysers, California dan Dikorelasikan dengan Data Gaya Berat

Program Studi Teknik Geofisika, Fakultas Teknologi Industri, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Kabupaten Lampung Selatan, Lampung 35365, Indonesia

Received: 30 Nov 2023; Revised: 15 Jan 2023; Accepted: 16 Jan 2024; Available online: 16 Apr 2024; Published: 16 Apr 2024.
Open Access Copyright (c) 2024 Jurnal Geosains dan Teknologi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract
Lapangan panas bumi The Geysers terletak di antara dua sesar strike-slip yang tidak aktif, yaitu Sesar Mercuryville dan Collayomi berarah barat laut tenggara. Bagian barat laut The Geysers merupakan lokasi proyek Enhanced Geothermal System (EGS), karena pada area ini lokasi zona reservoir memiliki suhu yang tinggi mencapai 400 °C dengan kedalaman sekitar 2,6 km di bawah permukaan. Penelitian ini bertujuan untuk mengetahui struktur dan kondisi bawah permukaan barat laut The Geysers menggunakan analisis tensor fase data magnetotellurik dan dikorelasikan dengan data gaya berat. Analisis tensor fase digunakan untuk mengetahui arah geoelectrical strike yang timbul akibat adanya ketidakhomogenan konduktivitas listrik secara lateral di Bumi dan memberikan informasi tentang kondisi bawah permukaan. Arah geoelectrical strike pada daerah penelitian diperoleh sekitar N145°E. Clay cap diidentifikasi memiliki nilai resistivitas <30 Ohm.m dengan kedalaman 0,2 km dan ketebalan 0,8 – 1 km, batupasir graywacke merupakan reservoir utama pada daerah penelitian memiliki nilai resistivitas 30 – 90 Ohm.m dengan kedalaman 1 km dan ketebalan 0,4 – 1,8 km, serta terdapat area yang lebih resistif dengan nilai resistivitas 90 – 300 Ohm.m pada kedalaman 1,5 – 2 km merupakan batuan metagraywacke. Peningkatan temperatur reservoir pada kedalaman 2,6 km diduga karena adanya peran dari batuan metagraywacke sebagai Hot Dry Rock Reservoir (HDR).
Fulltext View|Download
Keywords: The Geysers; magnetotellurik; tensor fase; gaya berat; hot dry rock reservoir
Funding: Institut Teknologi Sumatera

Article Metrics:

  1. Caldwell, T.G., Bibby, H.M., dan Brown, C., 2004. The magnetotelluric phase tensor. Geophysical Journal International, 158(2), hal.457–469. DOI: https://doi.org/10.1111/j.1365-246X.2004.02281.x
  2. Chapman, R.H., 1966. Gravity map of The Geysers area, California. California Division of Mines and Geology, Mineral Information Service, 19, hal.148–149
  3. Chin, J.L., Morrow, J.R., Ross, C.R., dan Clifton, H.E., 1993. Geologic maps of Upper Cenozoic deposits in central California. U.S Geological Survey
  4. USGS., 2023. The Geysers Geothermal Field. U.S Geological Survey. https://www.usgs.gov/volcanoes/clear-lake-volcanic-field/science/geysers-geothermal-field
  5. Dalrymple, G.B., Grove, M., Lovera, O.M., Harrison, T.M., Hulen, J.B., dan Lanphere, M.A., 1999. Age and thermal history of the Geysers plutonic complex (felsite unit), Geysers geothermal field, California: A 40Ar/39Ar and U-Pb study. Earth and Planetary Science Letters, 173(3), 285–298. DOI: https://doi.org/10.1016/S0012-821X(99)00223-X
  6. DeCourten, F., 2008. Geology of Northern California. Department of Earth Science Sierra College
  7. Febrika, G.Y., Setyawan, A., Nurwidyanto, M.I., Raharjo, I.B., dan Agung, L., 2017. Identifikasi Geological Strike dan Dimensionalitas Berdasarkan Analisis Phase Tensor untuk Pemodelan 2-D Magnetotelurik di Lapangan Panas Bumi “GYF”. Youngster Physics Journal, 6(2), hal.115–122
  8. Garcia, J., Hartline, C., Walters, M., Wright, M., Rutqvist, J., Dobson, P.F., dan Jeanne, P., 2016. The Northwest Geysers EGS Demonstration Project, California: Part 1: Characterization and reservoir response to injection. Geothermics, 63, hal.97–119. DOI: https://doi.org/10.1016/j.geothermics.2015.08.003
  9. Garcia, J., Walters, M., Beall, J., Hartline, C., Pingol, A., Pistone, S., dan Wright, M., 2012. Overview of the Northwest Geysers EGS Demonstration Project. Proceedings of the 37th Workshop on Geothermal Reservoir Engineering
  10. Grandis, H., Sudarman, S., dan Hendro, A., 2002. Aplikasi Metoda Magnetotellurik (MT) dalam Eksplorasi Geotermal. Geoforum HAGI Bandung, 1
  11. Harahap, Z.A., Haryanto, A.D., Firmansyah, Y., dan Alfadli, M.K., 2022. Determinasi Zona Reservoir Dengan Data Magnetotelurik Di Zona Prospek Panas Bumi Telaga Ngebel, Jawa Timur. Padjadjaran Geoscience Journal, 6(2), hal.803–811
  12. Hartline, C.S., Walters, M.A., Wright, M.C., Forson, C.K., dan Sadowski, A.J., 2016. Three-dimensional structural model building constrained by induced seismicity alignments at the Geysers geothermal field, Northern California. 41st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, 1–12
  13. Irawati, S.M., Hidayat, Wijanarko, E., dan Grandis, H. (2022). Integrated Magnetotelluric (MT), Gravity and Seismic Study of Lower Kutai Basin Configuration. Journal of Engineering and Technological Sciences, 54(1), hal.27–41. DOI: https://doi.org/10.5614/j.eng.technol.sci.2022.54.1.3
  14. Jeanne, P., Rutqvist, J., Vasco, D., Garcia, J., Dobson, P.F., Walters, M., Hartline, C., dan Borgia, A., 2014. A 3D hydrogeological and geomechanical model of an Enhanced Geothermal System at The Geysers, California. Geothermics, 51, hal.240–252. DOI: https://doi.org/10.1016/j.geothermics.2014.01.013
  15. Marwan, Yanis, M., Zahratunnisa, Idroes, R., Nugraha, G. S., Dharma, D.B., Susilo, A., Saputra, D., Suriadi, dan Paembonan, A.Y., 2022. Geothermal Reservoir Depth of Seulawah Agam Volcano Estimated From 1-D Magnetotelluric. Journal of Applied Engineering Science, 20(3), 754–764
  16. Niasari, S.W., 2016. A short introduction to geological strike and geo-electrical strike. AIP Conference Proceedings, 1755. DOI: https://doi.org/10.1063/1.4958531
  17. Olhoeft, G.R., 1981. Electrical properties of granite with implications for the lower crust. Journal of Geophysical Research, 86(B2), hal.931–936. DOI: https://doi.org/10.1029/JB086iB02p00931
  18. Peacock, J.R., Mangan, M.T., Walters, M., Hartline, C., Glen, J.M.G., Earney, T.E., dan Schermerhorn, W.D., 2019. Geophysical characterization of the heat source in the NorthwestGeysers, California. 44th Workshop on Geothermal Reservoir Engineering
  19. Rodi, W. dan Mackie, R.L., 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66(1), hal.174–187. DOI: https://doi.org/10.1190/1.1444893
  20. Romero, A.E., McEvilly, T.V., Majer, E.L., dan Vasco, D., 1995. Characterization of the geothermal system beneath the Northwest Geysers steam field, California, from seismicity and velocity patterns. Geothermics, 24(4), hal.471–487. DOI: https://doi.org/10.1016/0375-6505(95)00003-9
  21. Rutqvist, J., Jeanne, P., Dobson, P. F., Garcia, J., Hartline, C., Hutchings, L., Singh, A., Vasco, D.W., dan Walters, M., 2016. The Northwest Geysers EGS Demonstration Project, California – Part 2: modeling and interpretation. Geothermics, 63, hal.120–138. DOI: https://doi.org/10.1016/j.geothermics.2015.08.002
  22. Sari, D.P., Daud, Y., dan Siagian, H., 2023. The Characteristics Of Base Of Conductor In X Geothermal Field Based On The Magnetotelluric And Well Data. Buletin Sumber Daya Geologi, 18(1), hal.15–26. DOI: https://doi.org/10.47599/bsdg.v18i1.362
  23. Simpson, F. dan Bahr, K., 2005. Practical magnetotellurics. In The Press Syndicate Of The University Of Cambridge (Vol. 9780521817)
  24. Stanley, W.D., Benz, H.M., Walters, M.A., Villasenor, A., dan Rodriguez, B.D., 1998. Tectonic controls on magmatism in the Geysers-Clear Lake region: Evidence from new geophysical models. Bulletin of the Geological Society of America, 110(9), 1193–1207. DOI: doi.org/10.1130/0016-7606(1998)110<1193:TCOMIT>2.3.CO;2
  25. Stanley, W.D., dan Blakely, R.J., 1995. The Geysers-Clear Lake geothermal area, California-An updated geophysical perspective of heat sources. Geothermics, 24(2), hal.187–221. DOI: https://doi.org/10.1016/0375-6505(94)00048-H

Last update:

No citation recorded.

Last update:

No citation recorded.