skip to main content

Perubahan Kecepatan Subduksi Lempeng Indo-Australia terhadap Lempeng Sundaland akibat Gempa Bumi Samudera Hindia tahun 2016

Teknik Geomatika, Institut Teknologi Sumatra, Indonesia

Received: 24 Aug 2021; Revised: 27 Nov 2021; Accepted: 29 Nov 2021; Available online: 3 Dec 2013; Published: 4 Dec 2021.
Open Access Copyright (c) 2021 Jurnal Geosains dan Teknologi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Gempa bumi Samudera Hindia terjadi pada tanggal 2 Maret 2016 dengan magnitudo7.8 di sekitar zona subduksi Lempeng Sundaland. Implikasi tektonik dari gempa bumi dengan magnitudo di atas 7 ini diteliti karena implikasi tektonik gempa bumi di Samudera Hindia tahun 2012 sangat besar hingga Pulau Jawa. Penelitian ini bertujuan mendapatkan pengaruh gempa bumi Samudera Hindia tahun 2016 terhadap perubahan kecepatan subduksi. Data yang digunakan adalah data Global Navigation Satellite System (GNSS) kontinu di tujuh stasiun yang berada di Lempeng Indo-Australia dan Lempeng Sundaland. Data diolah dengan perangkat lunak ilmiah untuk mendapat solusi koordinat harian. Pada deret waktu koordinat, dilakukan perhitungan kecepatan degan regresi linier untuk data sebelum gempa bumi dan data setelah gempa bumi. Nilai kecepatan yang diperoleh digunakan untuk perhitungan regangan. Hal yang didapatkan dan dibahas adalah perubahan nilai kecepatan dan regangan, serta membandingkan arah kecepatan stasiun GNSS dengan arah kecepatan dari lempeng terkait. Kecepatan stasiun GNSS yang diperoleh berkisar 18 hingga 70 mm/tahun. Kecepatan stasiun GNSS mengalami penurunan dan regangan mengalami pertambahan nilai pemendekan setelah gempa bumi. Nilai perubahan semakin besar untuk stasiun yang lebih dekat ke Palung Sunda. Stasiun GNSS yang berada di pulau di sebelah barat Pulau Sumatra diduga berada di Blok Sumatra, pecahan dari Lempeng Sundaland.

Fulltext View|Download
Keywords: gempa bumi; kecepatan; lempeng; regangan; subduksi.
Funding: Institut Teknologi Sumatera

Article Metrics:

  1. Alif, S.M., Meilano, I., Gunawan, E. dan Efendi, J., 2016. Evidence of postseismic deformation signal of the 2007 M8. 5 Bengkulu earthquake and the 2012 M8. 6 Indian Ocean earthquake in Southern Sumatra, Indonesia, based on GPS data. Journal of Applied Geodesy, 10(2), hal.103-108. DOI: 10.1515/jag-2015-0019
  2. Alif, S.M., Fattah, E.I. and Kholil, M., 2020a. Geodetic slip rate and locking depth of east Semangko Fault derived from GPS measurement. Geodesy and Geodynamics, 11(3), hal.222-228. https://doi.org/10.1016/j.geog.2020.04.002
  3. Alif, S.M., Yosua, E., Fauzi, A.I. and Leksono, B.E., 2020b. Association between Surface Air Temperature And Land Use On The Campus Scale. Journal of Geoscience, Engineering, Environment, and Technology, 5(3), hal.147-154. DOI: https://doi.org/10.25299/jgeet.2020.5.3.5187
  4. Alif, S.M., Fattah, E.I., Kholil, M. dan Anggara, O., 2021a. Source of the 2019 Mw6.9 Banten Intraslab earthquake modelled with GPS data inversion. Geodesy and Geodynamics, 12(4), hal.308-314. https://doi.org/10.1016/ j.geog.2021.06.001
  5. Alif, S.M., Saraswati, N.R. dan Perdana, R.S., 2021b, September. Identification of Capable Fault Location around Mount Betung Area Based on GPS Strain Data. IOP Conference Series: Earth and Environmental Science, 830(1), 012040
  6. Altamimi, Z., Rebischung, P., Métivier, L. and Collilieux, X., 2016. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 121(8), pp.6109-6131. https://doi.org/10.1002/ 2016JB013098
  7. Anugrah, B., Meilano, I., Gunawan, E. dan Efendi, J., 2015. Estimation of postseismic deformation parameters from continuous GPS data in northern Sumatra after the 2004 Sumatra-Andaman earthquake. Earthquake Science, 28(5), pp.347-352. DOI: 10.1007/s11589-015-0136-x
  8. DeMets, C., Gordon, R.G. dan Argus, D.F., 2010. Geologically current plate motions. Geophysical Journal International, 181(1), pp.1-80. https://doi.org/10.1111/j.1365-246X.2009.04491.x
  9. Devoti, R., Esposito, A., Pietrantonio, G., Pisani, A.R. dan Riguzzi, F., 2011. Evidence of large scale deformation patterns from GPS data in the Italian subduction boundary. Earth and Planetary Science Letters, 311(3-4), pp.230-241. DOI: 10.1016/j.epsl.2011.09.034
  10. Griffin, J., Nguyen, N., Cummins, P. dan Cipta, A., 2019. Historical earthquakes of the eastern Sunda Arc: Source mechanisms and intensity‐based testing of Indonesia’s national seismic hazard assessment. Bulletin of the Seismological Society of America, 109(1), pp.43-65. https://doi.org/10.1785/0120180085
  11. Hanifa, N.R., Sagiya, T., Kimata, F., Efendi, J., Abidin, H.Z. dan Meilano, I., 2014. Interplate coupling model off the southwestern coast of Java, Indonesia, based on continuous GPS data in 2008–2010. Earth and Planetary Science Letters, 401, hal.159-171. https://doi.org/10.1016/j.epsl.2014.06.010
  12. Hayes, G.P., Moore, G.L., Portner, D.E., Hearne, M., Flamme, H., Furtney, M. dan Smoczyk, G.M., 2018. Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), hal.58-61. DOI: 10.1126/science.aat4723
  13. Heidarzadeh, M., Harada, T., Satake, K., Ishibe, T. dan Takagawa, T., 2017. Tsunamis from strike-slip earthquakes in the Wharton Basin, northeast Indian Ocean: March 2016 M w7. 8 event and its relationship with the April 2012 M w 8.6 event. Geophysical Journal International, 211(3), hal.1601-1612. https://doi.org/10.1093/gji/ggx395
  14. Herring, T.A., King, R.W. dan McClusky, S.C., 2010. Introduction to GAMIT/GLOBK. Massachusetts Institute of Technology, Cambridge, Massachusetts
  15. Johnston, G., Riddell, A. dan Hausler, G., 2017. The international GNSS service. Springer handbook of global navigation satellite systems. Springer International Publishing, hal.967-982
  16. Kuncoro, H., Meilano, I. dan Susilo, S., 2019. Sunda and Sumatra Block Motion in ITRF2008. E3S Web of Conferences, 94, p. 04006
  17. Maulida, P., Meilano, I., Gunawan, E. dan Efendi, J., 2016, May. Analysis of 2012 M8. 6 Indian Ocean earthquake coseismic slip model based on GPS data. AIP Conference Proceedings, 1730(1), p.040006). Publishing LLC. DOI: 10.1063/1.4947396
  18. McCaffrey, R., 2009. The tectonic framework of the Sumatran subduction zone. Annual Review of Earth and Planetary Sciences, 37, hal.345-366. DOI: 10.1146/annurev.earth.031208.100212
  19. McLoughlin, I.V., Wong, K.J. dan Tan, S.L., 2011. Data collection, communications and processing in the Sumatran GPS array (SuGAr). Proceedings of the World Congress on Engineering, 2, hal. 6-8)
  20. Pinasti, A., Widjajanti, N., Pratama, C., Parseno, P., Lestari, D., Sunantyo, A., Heliani, L. dan Ulinnuha, H., 2019, July. Crustal Deformation Pattern across Yogyakarta Special Region Revealed by a Dense Geodetic Measurements. 5th International Conference on Science and Technology (ICST), 1, hal.1-5
  21. Pratama, C., Ito, T., Sasajima, R., Tabei, T., Kimata, F., Gunawan, E., Ohta, Y., Yamashina, T., Ismail, N., Nurdin, I. and Sugiyanto, D., 2017. Transient rheology of the oceanic asthenosphere following the 2012 Indian Ocean Earthquake inferred from geodetic data. Journal of Asian Earth Sciences, 147, hal.50-59. https://doi.org/10.1016/j.jseaes.2017.07.049
  22. Stern, R.J., 2002. Subduction zones. Reviews of geophysics, 40(4), hal.3-1
  23. Wang, K., Hu, Y. dan He, J., 2012. Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature, 484(7394), hal.327-332. https://doi.org/10.1038/nature11032
  24. Wessel, P., Smith, W.H., Scharroo, R., Luis, J. dan Wobbe, F., 2013. Generic mapping tools: improved version released. Eos, Transactions American Geophysical Union, 94(45), hal.409-410. https://doi.org/10.1002/2013EO450001
  25. Yong, C.Z., Denys, P.H. dan Pearson, C.F., 2017. Present-day kinematics of the Sundaland plate. Journal of Applied Geodesy, 11(3), hal.169-177. https://doi.org/10.1515/jag-2016-0024

Last update:

No citation recorded.

Last update:

No citation recorded.