skip to main content

HIERARCHICAL BAYESIAN SMALL AREA ESTIMATION ON OVERDISPERSED DATA: WORKERS WITH DISABILITIES IN INDONESIA

*Danardana Muhammad  -  Applied Statistics, Politeknik Statistika STIS, 64C Otto Iskandardinata, Jatinegara, Kota Jakarta Timur, Jakarta, Indonesia 13330, Indonesia
Halim Nur Jamaluddin  -  Applied Statistics, Politeknik Statistika STIS, 64C Otto Iskandardinata, Jatinegara, Kota Jakarta Timur, Jakarta, Indonesia 13330, Indonesia
Mira Octavia  -  Applied Statistics, Politeknik Statistika STIS, 64C Otto Iskandardinata, Jatinegara, Kota Jakarta Timur, Jakarta, Indonesia 13330, Indonesia
Rohimma Arisanti  -  Applied Statistics, Politeknik Statistika STIS, 64C Otto Iskandardinata, Jatinegara, Kota Jakarta Timur, Jakarta, Indonesia 13330, Indonesia
Nofita Istiana  -  Applied Statistics, Politeknik Statistika STIS, 64C Otto Iskandardinata, Jatinegara, Kota Jakarta Timur, Jakarta, Indonesia 13330, Indonesia

Citation Format:
Abstract
Persons with disabilities encounterdifficulties in accessing essentialservices, including employment, healthcare, information, and political participation. In line with the target 8.5 of the SDGs, efforts have been made to promotefull, productive, and decent employment for all, including for persons with disabilities. However, the majority ofworkers with disabilities in Indonesia remain concentrated in the informal sector during the period of 2022–2023. Unfortunately, data on workers with disabilities is currently only available at the national level. This limitation arises because the sample size of workers with disabilities is insufficient to meet the minimum requirements for direct estimation at the provincial level. Therefore, a Small Area Estimation approach is necessary to assess the participationof persons with disabilities in the workforce at more granular level, such as provinces. In this study, auxiliary variables such as the sex ratio, the number of residents who are shackled, and the availability of computer skills infrastructure were incorporated to the Small Area Estimation (SAE) framework. The Hierarchical Bayesian Poisson-Gamma was employed to improve the precision of direct estimation. The research results show that the HB Poisson-gamma estimator has better precision compared to the direct estimator.
Fulltext View|Download
Keywords: Workers with disabilities, Small Area Estimation, Hierarchical Bayesian Poisson-Gamma

Article Metrics:

  1. Badan Pusat Statistik (BPS), Indikator Pekerjaan Layak di Indonesia 2024. 2025
  2. D. Erissa dan D. Widinarsih, “Akses Penyandang Disabilitas Terhadap Pekerjaan: Kajian Literatur,” J. Pembang. Mns., vol. 3, no. 1, 2022, doi: 10.7454/jpm.v3i1.1027
  3. WHO, Global report on health equity for persons with disabilities. 2022
  4. Maghfirah, “Geospasial Tingkat Kesempatan Kerja dan Faktor yang Berhubungan dengan Partisipasi Kerja Penyandang Disabilitas Pada Masa Awal Pandemi Covid-19 (Geospatial Job Opportunity Rate and Factors Related to Work Participation of Disable People in The Early Time,” Semin. Nas. Off. Stat. 2022, vol. 19, hal. 21–30, 2022
  5. S. P. Estika dan Rumayya, “Partisipasi Penyandang Disabilitas dalam Pasar Kerja di Indonesia,” J. Ilm. MEA (Manajemen, Ekon. dan Akuntansi), vol. 8, no. 3, hal. 501–510, 2024, doi: doi.org/10.31955/mea.v8i3.4476
  6. A. Putri, “Disabilitas dan Partisipasi di Pasar Tenaga Kerja Indonesia: Analisis Data Sakernas 2018,” J. Ketenagakerjaan, vol. 14, no. 2, hal. 138–152, 2019
  7. R. R. Ridwansyah et al., “Penerapan Small Area Estimation dalam Melakukan Pendugaan Angka Partisipasi Sekolah Disabilitas di Pulau Jawa Tahun 2023,” vol. 2024, no. Senada, hal. 30–41, 2024
  8. D. A. Puspitasari et al., “Pendugaan Area Kecil Persentase Anak Usia 0-17 Tahun yang Hidup di Bawah Garis Kemiskinan Tingkat Kabupaten/Kota di Pulau Jawa Tahun 2023,” 2024, doi: 10.34123/semnasoffstat.v2024i1.1967
  9. S. I. Siregar, “Utilizing Night-Time Light and Hierarchical Bayesian Small Area Model for Consumption Expenditure Estimation,” Citiz. J. Ilm. Multidisiplin Indones., vol. 4, no. 1, hal. 61–71, 2024, doi: 10.53866/jimi.v4i1.534
  10. D. N. F. A. Puspita dan A. Ubaidillah, “Pendugaan Area Kecil Tingkat Pengangguran Terbuka Level Kecamatan Di Provinsi Kepulauan Riau Tahun 2022,” Semin. Nas. Off. Stat., 2024
  11. I. Wulandari, K. A. Notodiputro, A. Fitrianto, dan A. Kurnia, “Hierarchical Bayesian Models for Small Area Estimation under Overdispersed Count Data,” Eng. Lett., vol. 31, no. 4, hal. 1333–1342, 2023
  12. S. N. Rohmah dan N. Hajarisman, “Penerapan Small Area Estimation dengan Metode Empirical Bayes dalam Menduga Risiko Relatif Penyebaran TBC di Kabupaten Karawang Tahun 2021,” Bandung Conf. Ser. Stat., vol. 2, no. 2, hal. 490–498, 2022, doi: 10.29313/bcss.v2i2.4765
  13. Badan Pusat Statistik (BPS), Potret Penyandang Disabilitas di Indonesia: Hasil Long Form SP2020. 2024
  14. Washington Group on Disability Statistics, “An Introduction to the Washington Group on Disability Statistics Question Sets,” no. June, hal. 1–17, 2020
  15. N. Fortune et al., “Do Area-Level Environmental Factors Influence Employment for People with Disability? A Scoping Review,” Int. J. Environ. Res. Public Health, vol. 19, no. 15, hal. 1–16, 2022, doi: 10.3390/ijerph19159082
  16. A. Ubaidillah, I. Y. Wulansari, dan Z. Y. Perwira, “saeHB: Small Area Estimation using Hierarchical Bayesian Method,” Compr. R Arch. Netw., no. November, hal. 40, 2022, doi: 10.13140/RG.2.2.23850.13761
  17. R. Arnab, Unequal Probability Sampling. 2017. doi: 10.1016/b978-0-12-811848-1.00005-4
  18. A. Agresti, Categorical Data Analysis, vol. 47, no. 4. 2013
  19. J. N. K. Rao dan I. Molina, Small Area Estimation. 2015. doi: 10.1002/9781118735855

Last update:

No citation recorded.

Last update:

No citation recorded.