skip to main content

ON PROPERTIES OF PROJECTIVE SPACE DETERMINED BY QUOTIENT MAP

*Edi Kurniadi  -  Department of Mathematics of FMIPA of Universitas Padjadjaran, Indonesia
Badrulfalah Badrulfalah  -  Departemen Matematika FMIPA Unpad, Indonesia

Citation Format:
Abstract

The state of a system in quantum theory is not always described by an element of a Hilbert space but by an element of projective space. The research aims to prove that the real projective space consisting of one-dimensional linear subspaces is a smooth manifold which is constructed by a quotient map. It is shown that a projective space is a Hausdorff space, second countable, and -dimensional locally Euclidean. It is also proved that the -dimensional real a projective space is homeomorphic to the quotient topology . The proof involves a quotient map which is defined by a quotient topology.

Fulltext View|Download
Keywords: Projective space, Quotient map, Quotient topology, Subspaces, Smooth manifold

Article Metrics:

  1. C.-D. Neacşu, “On the stability of the quaternion projective space,” Reports on Mathematical Physics, vol. 94, no. 3, pp. 395–404, Dec. 2024, doi: 10.1016/S0034-4877(24)00086-7
  2. C. Brandão, “Biharmonic submanifolds of the quaternionic projective space,” Journal of Geometry and Physics, vol. 206, p. 105310, Dec. 2024, doi: 10.1016/j.geomphys.2024.105310
  3. R. Bistroń, M. Eckstein, S. Friedland, T. Miller, and K. Życzkowski, “A new class of distances on complex projective spaces,” Linear Algebra Appl, Oct. 2024, doi: 10.1016/j.laa.2024.10.017
  4. M. Méo, “Chow forms and complete intersections in the projective space,” Bulletin des Sciences Mathématiques, vol. 197, p. 103505, Dec. 2024, doi: 10.1016/j.bulsci.2024.103505
  5. N. Mohan Kumar, P. Narayanan, and A. J. Parameswaran, “Ulrich bundles on double covers of projective spaces,” J Pure Appl Algebra, vol. 229, no. 6, p. 107946, Jun. 2025, doi: 10.1016/j.jpaa.2025.107946
  6. J. M. Lee, Introduction to Smooth Manifolds, vol. 218. New York, NY: Springer New York, 2012. doi: 10.1007/978-1-4419-9982-5
  7. R. Berndt, Representations of Linear Groups. Wiesbaden: Vieweg, 2007. doi: 10.1007/978-3-8348-9401-4
  8. B. C. Hall, Lie Groups, Lie Algebras, and Representations, vol. 222. Cham: Springer International Publishing, 2015. doi: 10.1007/978-3-319-13467-3
  9. A. A. Kirillov, “UNITARY REPRESENTATIONS OF NILPOTENT LIE GROUPS,” Russian Mathematical Surveys, vol. 17, no. 4, pp. 53–104, Aug. 1962, doi: 10.1070/RM1962v017n04ABEH004118
  10. M. G. Cowling, “Decay estimates for matrix coefficients of unitary representations of semisimple Lie groups,” J Funct Anal, vol. 285, no. 8, p. 110061, Oct. 2023, doi: 10.1016/j.jfa.2023.110061
  11. L. W. Tu, An Introduction to Manifolds. New York, NY: Springer New York, 2011. doi: 10.1007/978-1-4419-7400-6

Last update:

No citation recorded.

Last update:

No citation recorded.