skip to main content

Corrected Trapezoidal Rule For The Riemann-Stieltjes Integral

*Rike Marjulisa orcid  -  Department of Mathematics, University of Riau, Pekanbaru, Indonesia, Indonesia
M Imran  -  Department of Mathematics, University of Riau, Pekanbaru, Indonesia, Indonesia
Ayunda Putri  -  Department of Mathematics, University of Riau, Pekanbaru, Indonesia, Indonesia

Citation Format:
Abstract
This study investigates the derivation of a corrected trapezoidal rule for approximating the Riemann-Stieltjes integral. The corrected trapezoidal rule is derived by approximating certain monomial functions to obtain optimal method coefficients.  The proposed method has an accuracy of order three. Furthermore, an error analysis is conducted to assess the accuracy of the obtained approximation. In the final section, numerical computations are presented to compare the performance of the proposed method with existing methods. The results demonstrate that the proposed method produces smaller errors compared to previously developed approaches.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Turnitin
Subject
Type Research Instrument
  Download (1MB)    Indexing metadata
Keywords: corrected trapezoidal rule, Riemann-Stieltjes integral; error term

Article Metrics:

  1. T. J. Stieltjes, ”Recherches sur les fractions continues,” Annales de la Faculte des Sciences ´
  2. de Toulouse, vol. 8, no. 4, pp. J1–J122, 1894
  3. P. R. Mercer, ”Hadamard’s inequality and trapezoid rules for the Riemann-Stieltjes integral,” Jou. Math. Anal. and Appl., vol. 344, no. 2, pp. 921-926, 2008
  4. P. R. Mercer, ”Relative convexity and quadrature rules for the Riemann-Stieltjes integral,”
  5. Jou. Math. Ineq., vol. 6, no. 1, pp. 65-68, 2012
  6. W. Zhao, Z. Zhang, and Z. Ye, ”Midpoint derivative-based trapezoid rule for the Riemann-
  7. Stieltjes integral,” Ital. Jou. Pure. Appl. Math., vol. 33, pp. 369-376, 2014
  8. W. Zhao,Z. Zhang, and Z. Ye, ”Composite trapezoid rule for the Riemann-Stieltjes integral and its Richardson extrapolation formula,” Ital. Jou. Pure. Appl. Math., vol. 35, pp. 311-318, 2015
  9. W. Zhao and Z. Zhang, ”Derivative-based trapezoid rule for the Riemann-Stieltjes integral,” Math. Prob. Eng., vol. 2014, 2014
  10. Z. Zhang and Z. Ye, ”Midpoint derivative-based trapezoid rule for the Riemann-Stieltjes
  11. integral,” Ital. Jou. Pure. Appl. Math., vol. 33, pp. 369-376, 2014
  12. , W. Zhao and Z. Zhang, ”Simpson’s rule for the Riemann-Stieltjes integral,” Jou. Inter
  13. Math., vol.24, no.5, pp. 1305-1314, 2021
  14. K. Memon et.al, ”A Modified Derivative Based Scheme for the Riemann-Stieltjes Integral”, Sindh. Uni. Res. Jou., vol. 52, no. 1, pp. 37-40, 2020
  15. K. Memon et.al, ”Heronian Mean Derivative-Based Simpson’s-Type Scheme ForRiemann-Stieljes Integral,” Jou. Mech. Cont. Math. Sci., vol. 16, no. 3, pp. 53-68, 2021
  16. K. Memon et.al, ”Efficient Derivative-Based Simpson’s 1 3-Type Scheme Using Centroidal
  17. Mean For Riemann-Stieljes Integral,” Jou. Mech. Cont. Math. Sci., vol. 16, no. 3, pp. 6985,2021
  18. K. Memon et.al, ”A New Harmonic Mean Derivative-Based Simpson’s 1 3-Type Scheme
  19. For Riemann-Stieljes Integral,” Jou. Mech. Cont. Math. Sci., vol. 16, no. 4, pp. 28-46, 2021
  20. K. Memon et.al, ”An Efficient Four-Point Quadrature Scheme For Riemann-Stieljes Integral,” Jou. Mech. Cont. Math. Sci., vol. 16, no. 1, pp. 44-61, 2021
  21. R. Marjulisa and M. Imran, ”Aturan Titik Tengah Double untuk Integral Riemann-
  22. Stieltjes,” Jou. Math. Int., vol. 19, no. 1, pp.29-39, 2023
  23. C. J. Zarowski, An Introduction to Numerical Analysis for Electrical and Compuer Engineers. New Jersey: John Wiley & Sons, 2004

Last update:

No citation recorded.

Last update:

No citation recorded.