Faculty of Medicine, Diponegoro University, Indonesia
BibTex Citation Data :
@article{JBTR4802, author = {Abdulhakim Sulayman and Kis Djamiatun and Muflihatul Muniroh}, title = {Effectivity Of Annona Muricata and Artemisinin Combined Therapy on Brain CXCL10 expression (Study in Swiss Mice During Severe Plasmodium Berghei ANKA Infection)}, journal = {Journal of Biomedicine and Translational Research}, volume = {5}, number = {2}, year = {2019}, keywords = {Annona muricata; Artemisinin; P. berghei ANKA; CXCL10}, abstract = { ABSTRACT Background: Malaria, caused by Plasmodium sp infection, is a major global cause of morbidity and mortality. Most experimental cerebral malaria (ECM) studies show increase number of Th1 cells and CTLs in the brain, due to increase chemokine expression, including CXCL10, a potent chemokine involved in cerebral malaria (CM). Recent studies show that CXCL10 provokes apoptosis of human brain micro-endothelial cells and in vitro neuroglia cells. Objective: To determine whether combination of Annona muricata -leaf-extracted-by-water (AME) and artemisinin-combination-therapy (ACT) reduce brain-CXCL10-expression of Swiss-mice inoculated with P. berghei ANKA (PbA) . Methods: This was an experimental-study with post-test-only-control-group-design. Twenty-four Swiss-mice (PbA-inoculated) were randomly divided into 4 groups. Control group (C) was PbA inoculated only. X 1, X 2 and X 3 groups received AME, ACT and combination of AME and ACT treatment, respectively. CXCL10 was stained with in immunohistochemistry, which then observed by light microscope in order to determine Allred-score. Kruskal-Wallis test was used to statistically analyze the differences among groups, then followed by a Mann- Whitney U test. Result: C and X 1 groups had severe-PbA-infection when the study was end on day-7-PbA-infection, while X 2 and X 3 groups entered recovery-stage. The AME-ACT-treatment-group had significantly lower of brain-CXCL10-expression than AME-group ( p =0.008) and nearly significantly lower than control-group ( p =0.058). Group that received ACT alone had no different value of brain-CXCL10-expression than control-group ( p =0.502) and combination AME–ACT group ( p =0.335). Conclusion: The combination of AME–ACT treatment decreases brain-CXCL10-expression of Swiss-mice during PbA-infection-recovery-stage, indicating the effectivity of AME–ACT combined therapy is better prevention of cerebral malaria than AME alone. }, issn = {2503-2178}, pages = {47--52} doi = {10.14710/jbtr.v5i2.4802}, url = {https://ejournal2.undip.ac.id/index.php/jbtr/article/view/4802} }
Refworks Citation Data :
ABSTRACT
Background: Malaria, caused by Plasmodium sp infection, is a major global cause of morbidity and mortality. Most experimental cerebral malaria (ECM) studies show increase number of Th1 cells and CTLs in the brain, due to increase chemokine expression, including CXCL10, a potent chemokine involved in cerebral malaria (CM). Recent studies show that CXCL10 provokes apoptosis of human brain micro-endothelial cells and in vitro neuroglia cells.
Objective: To determine whether combination of Annona muricata-leaf-extracted-by-water (AME) and artemisinin-combination-therapy (ACT) reduce brain-CXCL10-expression of Swiss-mice inoculated with P. berghei ANKA (PbA).
Methods: This was an experimental-study with post-test-only-control-group-design. Twenty-four Swiss-mice (PbA-inoculated) were randomly divided into 4 groups. Control group (C) was PbA inoculated only. X1, X2 and X3 groups received AME, ACT and combination of AME and ACT treatment, respectively. CXCL10 was stained with in immunohistochemistry, which then observed by light microscope in order to determine Allred-score. Kruskal-Wallis test was used to statistically analyze the differences among groups, then followed by a Mann- Whitney U test.
Result: C and X1groups had severe-PbA-infection when the study was end on day-7-PbA-infection, while X2 and X3 groups entered recovery-stage. The AME-ACT-treatment-group had significantly lower of brain-CXCL10-expression than AME-group (p=0.008) and nearly significantly lower than control-group (p=0.058). Group that received ACT alone had no different value of brain-CXCL10-expression than control-group (p=0.502) and combination AME–ACT group (p=0.335).
Conclusion: The combination of AME–ACT treatment decreases brain-CXCL10-expression of Swiss-mice during PbA-infection-recovery-stage, indicating the effectivity of AME–ACT combined therapy is better prevention of cerebral malaria than AME alone.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Journal of Biomedicine and Translational Research Diponegoro University as publisher of the journal.
Copyright encompasses non-exclusive rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations.
Journal of Biomedicine and Translational Research Diponegoro University, the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Journal of Biomedicine and Translational Research Diponegoro University (JBTR) are sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form JBTR]
The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax : Journal of Biomedicine and Translational Research Faculty of Medicine, Diponegoro UniversityJl. Prof. Soedarto, Kampus UNDIP Tembalang, Semarang, Central Java, Indonesia 50275, Telp.: +62-24-8454714, Fax.: +62-24-8454714Email: jbtr@fk.undip.ac.id
JBTR by https://ejournal2.undip.ac.id/index.php/jbtr is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats