skip to main content

Effects of Vitamin C Supplementation on Histology of Callus Diameter and Osteoblast Number in Male Wistar Rats With Complete Femur Bone Fracture

Department of Orthopedic and Traumatology, Faculty of Medicine, Universitas Sumatera Utara, Indonesia

Received: 2 Feb 2025; Revised: 27 Apr 2025; Accepted: 29 Apr 2025; Available online: 30 Apr 2025; Published: 30 Apr 2025.
Open Access Copyright (c) 2025 Journal of Biomedicine and Translational Research
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Background: The role of nutritional factors, particularly vitamin C, in bone repair has been extensively studied. However, despite this research, the specific impact of vitamin C on bone fracture healing remains unclear. While some studies suggest that vitamin C supplementation may enhance bone repair, others report no significant benefits.

Objective: This study aimed to investigate the effects of different doses of vitamin C on callus formation and osteoblast proliferation in a rat femur fracture model.

Methods: A post-test-only control group design was employed in this study, involving 27 male Wistar rats that were randomly divided into three groups. The first and second groups received daily intramuscular injections of vitamin C at doses of 200 mg/kg body weight (BW) and 500 mg/kg BW, respectively, following femur bone fracture and fixation. The control group did not receive vitamin C and underwent no fixation. After 14 days, all rats were euthanized, and their femur bones were histologically examined for callus diameter and osteoblast count.

Results: Vitamin C supplementation significantly increased the callus diameter in rats with complete femoral fractures. Both the 200 mg and 500 mg doses proved effective, demonstrating a clear dose-response relationship. Additionally, Vitamin C significantly elevated the number of osteoblasts, which play a crucial role in bone formation. However, there was no statistically significant difference in osteoblast count between the 200 mg and 500 mg doses.

Conclusion: In conclusion, vitamin C supplementation has been shown to positively influence bone fracture healing in rats by promoting an increase in callus diameter and enhancing osteoblast proliferation. This study indicates that vitamin C could serve as a beneficial adjunct therapy for facilitating bone fracture healing, particularly by improving callus formation. Physicians should consider integrating vitamin C into treatment plans for patients with fractures, using doses similar to those applied in this study, adjusted appropriately for human use.

Note: This article has supplementary file(s).

Fulltext |  common.other
Cover Letter
Subject
Type Other
  Download (14KB)    Indexing metadata
 common.other
Potential Reviewer
Subject
Type Other
  Download (14KB)    Indexing metadata
Keywords: bone fracture healing; callus formation; osteoblast; vitamin C

Article Metrics:

  1. Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015 Jan 30;11(1):45–54
  2. Sheen JR, Mabrouk A, Garla V V. Fracture healing overview. Treasure Island (FL): StatPearls Publishing; 2023
  3. Apley A. ; S. System of orthopaedics and fractures. 10th ed. Florida: CRS Press; 2017
  4. Schindeler A, McDonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: The cellular picture. Semin Cell Dev Biol. 2008 Oct;19(5):459–66
  5. Szczęsny G. Fracture healing and its disturbances. A literature review. Ortop Traumatol Rehabil. 2015 Oct 16;17(5):437–54
  6. Gori JL, Butler JM, Chan YY, Chandrasekaran D, Poulos MG, Ginsberg M, et al. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells. J Clin Invest [Internet]. 2015 Mar 2;125(3):1243–54. Available from: http://www.jci.org/articles/view/79328
  7. Su P, Tian Y, Yang C, Ma X, Wang X, Pei J, et al. Mesenchymal stem cell migration during bone formation and bone diseases therapy. Int J Mol Sci [Internet]. 2018 Aug 9;19(8):2343. Available from: https://www.mdpi.com/1422-0067/19/8/2343
  8. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive Oxygen Species in inflammation and tissue injury. Antioxid Redox Signal. 2014 Mar;20(7):1126–67
  9. Nugroho F, Prasetyo A, Hasan M. Analisis jumlah sel osteoblas pada fraktur femur tikus wistar jantan yang diberi ekstrak etanol daun bayam merah (Amaranthus tricolor L.). J Agromediciine Med Sci. 2019;5(1):45–9
  10. Frankel VH, Kaplan DJ, Egol KA. Biomechanics of fractures. J Orthop Trauma. 2016 Aug;30(2):S2–6
  11. Dong Y, Peng R, Kang H, Song K, Guo Q, Zhao H, et al. Global incidence, prevalence, and disability of vertebral fractures: a systematic analysis of the global burden of disease study 2019. Spine J. 2022 May;22(5):857–68
  12. Lalloo R, Lucchesi LR, Bisignano C, Castle CD, Dingels Z V, Fox JT, et al. Epidemiology of facial fractures: incidence, prevalence and years lived with disability estimates from the Global Burden of Disease 2017 study. Inj Prev. 2020 Oct;26(Suppl 2):i27–35
  13. Pramukti I, Lindayani L, Chen YC, Yeh CY, Tai TW, Fetzer S, et al. Bone fracture among people living with HIV: A systematic review and meta-regression of prevalence, incidence, and risk factors. Blank RD, editor. PLoS One. 2020 Jun 4;15(6):e0233501
  14. Cordero DM, Miclau TA, Paul A V., Morshed S, Miclau T, Martin C, et al. The global burden of musculoskeletal injury in low and lower-middle income countries. OTA Int Open Access J Orthop Trauma. 2020 Jun;3(2):e062
  15. Kementerian Kesehatan Republik Indonesia. Riset Kesehatan Dasar 2018 (2018 Basic Health Research). Jakarta; 2018
  16. Sembiring TE, Rahmadhany H. Karakteristik penderita fraktur femur akibat kecelakaan lalu lintas di RSUP Haji Adam Malik Medan pada tahun 2016-2018. Ibnu Sina J Kedokt dan Kesehat. 2022 Jan 1;21(1):123–8
  17. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011 Jun;42(6):551–5
  18. Sarifah N, Epsilawati L, Azhari A, Satari MH, Priosoeryanto BP, Hatta I, et al. Analysis of osteoblast, osteoclast levels and radiographic patterns in the healing process of bone fractures (preliminary research). J Radiol Dentomaksilofasial Indones. 2021 Dec 31;5(3):106
  19. Aghajanian P, Hall S, Wongworawat MD, Mohan S. The roles and mechanisms of actions of vitamin C in bone: New developments. J Bone Miner Res. 2015 Nov 1;30(11):1945–55
  20. Chin KY, Ima-Nirwana S. Vitamin C and bone health: Evidence from cell, animal and human studies. Curr Drug Targets. 2018 Mar 19;19(5):439–50
  21. Barrios-Garay K, Toledano-Serrabona J, Gay-Escoda C, Sánchez-Garcés MÁ. Clinical effect of vitamin C supplementation on bone healing: A systematic review. Vol. 27, Medicina Oral Patologia Oral y Cirugia Bucal. 2022. p. 205–15
  22. Hung KC, Chiang MH, Wu SC, Chang YJ, Ho CN, Wang LK, et al. A meta-analysis of randomized clinical trials on the impact of oral vitamin C supplementation on first-year outcomes in orthopedic patients. Sci Rep. 2021;11(1):1–10
  23. Sarisözen B, Durak K, Dinçer G, Bilgen OF. The effects of vitamins E and C on fracture healing in rats. J Int Med Res. 2002;30(3):309–13
  24. Giordano V, Giordano M, Glória RC, de Souza FS, di Tullio P, Lages MM, et al. General principles for treatment of femoral head fractures. J Clin Orthop Trauma. 2019;10(1):155–60
  25. Wiyastha PM. Pemberian vitamin C pada fraktur femur tikus putih yang terpapar alkohol memiliki diameter kalus lebih tebal serta jumlah osteoblas dan ekspresi osteocalcin lebih banyak dibandingkan tanpa pemberian vitamin C. Universitas Udayana; 2016
  26. DePhillipo NN, Aman ZS, Kennedy MI, Begley JP, Moatshe G, LaPrade RF. Efficacy of vitamin C supplementation on collagen synthesis and oxidative stress after musculoskeletal injuries: A systematic review. Orthop J Sport Med. 2018 Oct 25;6(10):232596711880454
  27. Pullar J, Carr A, Vissers M. The Roles of Vitamin C in Skin Health. Nutrients. 2017 Aug 12;9(8):866
  28. Besio R, Maruelli S, Battaglia S, Leoni L, Villani S, Layrolle P, et al. Early Fracture Healing is Delayed in the Col1a2+/G610C Osteogenesis Imperfecta Murine Model. Calcif Tissue Int. 2018 Dec 3;103(6):653–62
  29. Gref R, Deloménie C, Maksimenko A, Gouadon E, Percoco G, Lati E, et al. Vitamin C–squalene bioconjugate promotes epidermal thickening and collagen production in human skin. Sci Rep. 2020 Oct 9;10(1):16883
  30. Pustylnik S, Fiorino C, Nabavi N, Zappitelli T, da Silva R, Aubin JE, et al. EB1 Levels Are Elevated in Ascorbic Acid (AA)-stimulated Osteoblasts and Mediate Cell-Cell Adhesion-induced Osteoblast Differentiation. J Biol Chem. 2013 Jul;288(30):22096–110
  31. Choi HK, Kim GJ, Yoo HS, Song DH, Chung KH, Lee KJ, et al. Vitamin C Activates Osteoblastogenesis and Inhibits Osteoclastogenesis via Wnt/β-Catenin/ATF4 Signaling Pathways. Nutrients. 2019 Feb 27;11(3):506
  32. Thaler R, Khani F, Sturmlechner I, Dehghani SS, Denbeigh JM, Zhou X, et al. Vitamin C epigenetically controls osteogenesis and bone mineralization. Nat Commun. 2022 Oct 6;13(1):5883
  33. D’Aniello C, Cermola F, Patriarca EJ, Minchiotti G. Vitamin C in stem cell biology: Impact on extracellular matrix homeostasis and epigenetics. Stem Cells Int. 2017;2017:1–16
  34. Katariya C, Jayakumar ND. Evaluation of vitamin C as an adjunct to periodontal therapy. Int J Health Sci (Qassim). 2022 Aug 11;7842–62
  35. Hadzir SN, Ibrahim SN, Abdul Wahab RM, Zainol Abidin IZ, Senafi S, Ariffin ZZ, et al. Ascorbic acid induces osteoblast differentiation of human suspension mononuclear cells. Cytotherapy. 2014 May;16(5):674–82
  36. Ahmed OM. Relationships between oxidative stress, cancer development and therapeutic interventions. J Cancer Sci Res. 2018;2(1)
  37. Jacob S, Nair AB, Morsy MA. Dose conversion between animals and humans: A practical solution. Indian J Pharm Educ Res. 2022 Jun 30;56(3):600–7
  38. Nair A, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27
  39. Hickey AJ, Maloney SE, Kuehl PJ, Phillips JE, Wolff RK. Practical Considerations in Dose Extrapolation from Animals to Humans. J Aerosol Med Pulm Drug Deliv. 2024 Apr 1;37(2):77–89

Last update:

No citation recorded.

Last update:

No citation recorded.