skip to main content

Exploring Systemic Lupus Erythematosus Pathogenesis through Animal Models: A Systematic Review of Humanized and Pristane-Induced Lupus Mice

1Faculty of Medicine, Universitas Brawijaya, Indonesia

2Saiful Anwar Hospital, Indonesia

Received: 17 Jul 2023; Revised: 21 Oct 2023; Accepted: 7 Dec 2023; Available online: 31 Dec 2023; Published: 31 Dec 2023.
Open Access Copyright (c) 2023 Journal of Biomedicine and Translational Research
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Studies involving experimental animals to explore the pathogenesis of systemic lupus erythematosus (SLE) which leads to the selection of optimal therapy have been widely conducted. The well-known model used to study SLE includes the pristane-induced mouse model and the more recently developed humanized mouse model that implants human immune cells into immunodeficient mice. The current state of the research has yet to provide a systematic review that analyzes both model and its contribution to our understanding of SLE pathogenesis. This systematic review-based study aims to provide a comprehensive overview of the development and application of pristane-induced and humanized mouse models. We obtained several relevant article sources include: (1) Search Strategy, on databases such as PubMed, MEDLINE, ScienceDirect, and Cochrane by adjusting the protocols listed in the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA); (2) Eligibility based on exclusion and inclusion criteria; and (3) Data Extraction. The findings show that 30 articles are relevant to the subject matter. Several strains of mice were used in the model of the 0.5 pristane injection method and the humanized mice model. All studies showed similar patterns in the onset and manifestation of SLE in mice models with slight variations. The purpose of using the pristane injection method and humanized mice model is adjusted to the output of each study. A variety of research preferences can be used as a reason for choosing pristane and humanized cells transplanted SLE methods in making lupus model mice.

Note: This article has supplementary file(s).

Fulltext View|Download |  Cover Letter
Cover Letter
Subject
Type Cover Letter
  Download (15KB)    Indexing metadata
Keywords: animal models; humanized-mice; pristane; systemic lupus erythematosus (SLE)

Article Metrics:

  1. Tang WY, Zhang YH, Zhang YS, Liao Y, Luo JS, Liu JH, et al. Abnormal thymic B cell activation and impaired T cell differentiation in pristane-induced lupus mice. Immunol Lett [Internet]. 2021;231(November 2020):49–60. doi: 10.1016/j.imlet.2020.12.012
  2. Richard ML, Gilkeson G. Mouse models of lupus: what they tell us and what they don’t. Lupus Sci Med. 2018;5(1):199. doi: 10.1136/lupus-2016-000199
  3. Freitas EC, Oliveira, Souza M, Monticielo OA. Pristane-induced lupus: considerations on this experimental model. Clin Rheumatol. 2017;1(2). doi: 10.1007/s10067-017-3811-6
  4. Halkom A, Wu H, Lu Q. Contribution of mouse models in our understanding of lupus. Int Rev Immunol. 2020;1(1):1–14. doi: 10.1080/08830185.2020.1742712
  5. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;2(3):22. doi: 10.1038/s41536-019-0083-6
  6. Chen J, Liao S, Zhou H, Yang L, Guo F, Chen S, et al. Humanized Mouse Models of Systemic Lupus Erythematosus: Opportunities and Challenges. Front Immunol. 2022;18(12):816–956. doi: 10.3389/fimmu.2021.816956
  7. Zhou S, Li Q, Zhou S, Zhao M, Lu L, Wu H, et al. A novel humanized cutaneous lupus erythematosus mouse model mediated by IL-21-induced age-associated B cells. J Autoimmun [Internet]. 2021;123(July):102686. doi: 10.1016/j.jaut.2021.102686
  8. Aschman T, Schaffer S, Georgallis SIB, Triantafyllopoulou A, Staeheli P, Voll RE. Interferon lambda regulates cellular and humoral immunity in pristane‐induced lupus. Int J Mol Sci. 2021;22(21). doi: 10.3390/ijms222111747
  9. Delimitreva SM, Boneva G V., Chakarova I V., Hadzhinesheva VP, Zhivkova RS, Markova MD, et al. Defective oogenesis in mice with pristane-induced model of systemic lupus. J Reprod Immunol [Internet]. 2021;148(July):103370. doi: 1016/j.jri.2021.103370
  10. Dema B, Lamri Y, Pellefigues C, Pacreau E, Saidoune F, Bidault C, et al. Basophils contribute to pristane-induced Lupus-like nephritis model. Sci Rep [Internet]. 2017;7(1):7969. doi: 10.1038/s41598-017-08516-7
  11. Gunawan M, Her Z, Liu M, Tan SY, Chan XY, Tan WWS, et al. A Novel Human Systemic Lupus Erythematosus Model in Humanised Mice /631/250/38 /631/250/256/2515 /13/21 article. Sci Rep [Internet]. 2017;7(1):1–11. doi: 10.1038/s41598-017-16999-7
  12. Kalim H, Pratama MZ, Nugraha AS, Prihartini M, Chandra A, Sholihah AI, et al. Regulatory T cells compensation failure cause the dysregulation of immune response in pristane induced lupus mice model. Malaysian J Med Sci. 2018;25(3):17–26. doi: 10.21315/mjms2018.25.3.3
  13. Liou L bang, Chen C chieh, Chiang W yu, Chen M hsin. De-sialylated and sialylated IgG anti-dsDNA antibodies respectively worsen and mitigate experimental mouse lupus proteinuria and possible mechanisms. Int Immunopharmacol [Internet]. 2022;109(6):108837. Available from: doi: 10.1016/j.intimp.2022.108837
  14. Pannu N, Bhatnagar A. Oxidative stress and immune complexes: Pathogenic mechanisms in pristane induced murine model of lupus. Immunobiology [Internet]. 2020;225(1):151871. doi: 10.1016/j.imbio.2019.11.006
  15. Lee JY, Madany E, El Kadi N, Pandya S, Ng K, Yamashita M, et al. Type 1 Interferon Gene Signature Promotes RBC Alloimmunization in a Lupus Mouse Model [Internet]. Vol. 11, Frontiers in Immunology. 2020. doi: 10.3389/fimmu.2020.584254
  16. Peixoto TV, Carrasco S, Botte DAC, Catanozi S, Parra ER, Lima TM, et al. CD4+CD69+ T cells and CD4+CD25+FoxP3+ Treg cells imbalance in peripheral blood, spleen and peritoneal lavage from pristane-induced systemic lupus erythematosus (SLE) mice. Adv Rheumatol (London, England). 2019;59(1):30. doi: 10.1186/s42358-019-0072-x
  17. Ma K, Du W, Xiao F, Han M, Huang E, Peng N, et al. IL-17 sustains the plasma cell response via p38-mediated Bcl-xL RNA stability in lupus pathogenesis. Cell Mol Immunol [Internet]. 2021;18(7):1739–50. doi: 10.1038/s41423-020-00540-4
  18. Leiss H, Niederreiter B, Bandur T, Schwarzecker B, Blüml S, Steiner G, et al. Pristane-induced lupus as a model of human lupus arthritis: evolvement of autoantibodies, internal organ and joint inflammation. Lupus. 2013 Jul;22(8):778–92. doi: 10.1177/0961203313492869
  19. Yun Y, Wang X, Xu J, Jin C, Chen J, Wang X, et al. Pristane induced lupus mice as a model for neuropsychiatric lupus (NPSLE). Behav Brain Funct [Internet]. 2023;19(1):3. doi: 10.1186/s12993-023-00205-y
  20. Luciano-Jaramillo J, Sandoval-García F, Vázquez-Del Mercado M, Gutiérrez-Mercado YK, Navarro-Hernández RE, Martínez-García EA, et al. Downregulation of hippocampal NR2A/2B subunits related to cognitive impairment in a pristane-induced lupus BALB/c mice. PLoS One [Internet]. 2019 Sep 9;14(9):e0217190. doi: 10.1371/journal.pone.0217190
  21. Summers SA, Odobasic D, Khouri MB, Steinmetz OM, Yang Y, Holdsworth SR, et al. Endogenous interleukin (IL)-17A promotes pristane-induced systemic autoimmunity and lupus nephritis induced by pristane. Clin Exp Immunol. 2014 Jun;176(3):341–50. doi: 10.1111/cei.12287
  22. Han S, Zhuang H, Xu Y, Lee P, Li Y, Wilson JC, et al. Maintenance of autoantibody production in pristane-induced murine lupus. Arthritis Res Ther [Internet]. 2015;17(1):384. doi: 10.1186/s13075-015-0886-9
  23. Liu S, Li Y, Li J, Wang S, Ji P, Zhang M, et al. CD4+ T Cells Promote IgG Production in MHC-Independent and ICAM-1-Dependent Manners in Pristane-Induced Lupus Mice. Kato Y, editor. Mediators Inflamm [Internet]. 2022;2022:9968847. doi: 10.1155/2022/9968847
  24. García-Rodríguez S, Rosal-Vela A, Botta D, Cumba Garcia LM, Zumaquero E, Prados-Maniviesa V, et al. CD38 promotes pristane-induced chronic inflammation and increases susceptibility to experimental lupus by an apoptosis-driven and TRPM2-dependent mechanism. Sci Rep [Internet]. 2018;8(1):3357. doi: 10.1038/s41598-018-21337-6
  25. Kienhöfer D, Hahn J, Stoof J, Csepregi JZ, Reinwald C, Urbonaviciute V, et al. Experimental lupus is aggravated in mouse strains with impaired induction of neutrophil extracellular traps. JCI Insight. 2017;2(10):1–13. doi: 10.1172/jci.insight.92920
  26. McClung DM, Kalusche WJ, Jones KE, Ryan MJ, Taylor EB. Hypertension and endothelial dysfunction in the pristane model of systemic lupus erythematosus. Physiol Rep. 2021;9(3):1–13. doi: 10.14814/phy2.14734
  27. Bossaller L, Rathinam VAK, Bonegio R, Chiang P-I, Busto P, Wespiser AR, et al. Overexpression of membrane-bound fas ligand (CD95L) exacerbates autoimmune disease and renal pathology in pristane-induced lupus. J Immunol. 2013 Sep;191(5):2104–14. doi: 10.4049/jimmunol.1300341
  28. Bossaller L, Christ A, Pelka K, Nündel K, Chiang P-I, Pang C, et al. TLR9 Deficiency Leads to Accelerated Renal Disease and Myeloid Lineage Abnormalities in Pristane-Induced Murine Lupus. J Immunol [Internet]. 2016 Aug 15;197(4):1044–53. doi: 10.4049/jimmunol.1501943
  29. Kanno Y, Miyashita M, Seishima M, Matsuo O. α2AP is associated with the development of lupus nephritis through the regulation of plasmin inhibition and inflammatory responses. Immunity, Inflamm Dis. 2020 Sep;8(3):267–78. doi: 10.1002/iid3.302
  30. Amarilyo G, Lourenço E V, Shi F-D, La Cava A. IL-17 Promotes Murine Lupus. J Immunol [Internet]. 2014 Jul 15;193(2):540–3. doi: 10.4049/jimmunol.1400931
  31. Smith S, Wu PW, Seo JJ, Fernando T, Jin M, Contreras J, et al. IL-16/miR-125a axis controls neutrophil recruitment in pristane-induced lung inflammation. J Clin Invest. 2018;3(15):1–15. doi: 10.1172/jci.insight.120798
  32. Lu A, Li H, Niu J, Wu S, Xue G, Yao X, et al. Hyperactivation of the NLRP3 Inflammasome in Myeloid Cells Leads to Severe Organ Damage in Experimental Lupus. J Immunol [Internet]. 2017 Feb 1;198(3):1119–29. doi: 10.4049/jimmunol.1600659
  33. Kluger MA, Melderis S, Nosko A, Goerke B, Luig M, Meyer MC, et al. Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney Int [Internet]. 2016 Jan 1;89(1):158–66. doi: 1038/ki.2015.296
  34. Zhang L, Wu M, Hu B, Chen H, Pan J-R, Ruan W, et al. Identification and molecular typing of Naegleria fowleri from a patient with primary amebic meningoencephalitis in China. Int J Infect Dis [Internet]. 2018;72:28–33. doi: 10.1016/j.ijid.2018.05.001
  35. Zhuang H, Han S, Li Y, Kienhöfer D, Lee P, Shumyak S, et al. A Novel Mechanism for Generating the Interferon Signature in Lupus: Opsonization of Dead Cells by Complement and IgM. Arthritis Rheumatol. 2016;68(12):2917–28. doi: 10.1002/art.39781
  36. Perry D, Sang A, Yin Y, Zheng Y-Y, Morel L. Murine models of systemic lupus erythematosus. J Biomed Biotechnol. 2011;1(1):271694. doi: 10.1155/2011/271694
  37. Rottman JB, Willis CR. Mouse Models of Systemic Lupus Erythematosus Reveal a Complex Pathogenesis. Vet Pathol [Internet]. 2010 May 6;47(4):664–76. doi: 10.1177/0300985810370005
  38. Dent EL, Taylor EB, Sasser JM, Ryan MJ. Temporal hemodynamic changes in a female mouse model of systemic lupus erythematosus. Am J Physiol Physiol [Internet]. 2020 Mar 9;318(5):F1074–85. doi: 10.1152/ajprenal.00598.2019
  39. Graham JH, Yoachim SD, Gould KA. Estrogen Receptor Alpha Signaling Is Responsible for the Female Sex Bias in the Loss of Tolerance and Immune Cell Activation Induced by the Lupus Susceptibility Locus Sle1b. Front Immunol. 2020;11(2):582214. doi: 10.3389/fimmu.2020.582214
  40. Reeves WH, Lee PY, Weinstein JS, Satoh M, Lu L. Induction of autoimmunity by pristane and other naturally occurring hydrocarbons. Trends Immunol [Internet]. 2009;30(9):455–64. doi: 10.1016/j.it.2009.06.003
  41. Hoffmann MH, Tuncel J, Skriner K, Tohidast-Akrad M, Türk B, Pinol-Roma S, et al. The Rheumatoid Arthritis-Associated Autoantigen hnRNP-A2 (RA33) Is a Major Stimulator of Autoimmunity in Rats with Pristane-Induced Arthritis1. J Immunol [Internet]. 2007 Dec 1;179(11):7568–76. doi: 10.4049/jimmunol.179.11.7568
  42. Alves da Costa T, Lang J, Torres RM, Pelanda R. The development of human immune system mice and their use to study tolerance and autoimmunity. J Transl Autoimmun. 2019;2:100021. doi: 10.1016/j.jtauto.2019.100021
  43. Sang A, Yin Y, Zheng YY, Morel L. Animal models of molecular pathology systemic lupus erythematosus. Prog Mol Biol Transl Sci. 2012;105:321-370. doi: 10.1016/B978-0-12-394596-9.00010-X
  44. Yan Y, Zhang Z, Chen Y, Hou B, Liu K, Qin H, et al. Coptisine Alleviates Pristane-Induced Lupus-Like Disease and Associated Kidney and Cardiovascular Complications in Mice [Internet]. Vol. 11, Frontiers in Pharmacology . 2020. doi: 10.3389/fphar.2020.00929
  45. Dema B, Lamri Y, Pellefigues C, Pacreau E, Saidoune F, Bidault C, et al. Basophils contribute to pristane-induced Lupus-like nephritis model. Sci Rep. 2017;7(1):1–9. doi: 10.1038/s41598-017-08516-7
  46. Shi Y, Tsuboi N, Furuhashi K, Du Q, Horinouchi A, Maeda K, et al. Pristane-Induced Granulocyte Recruitment Promotes Phenotypic Conversion of Macrophages and Protects against Diffuse Pulmonary Hemorrhage in Mac-1 Deficiency. J Immunol [Internet]. 2014 Nov 15;193(10):5129–39. doi: 10.4049/jimmunol.1401051
  47. Wijaya C. The Role of Antinuclear Antibody (ANA) Profile in Diagnosis of Systemic Lupus Erythematosus. Adv Cytol Pathol. 2017;2(5):133–4. doi: 10.15406/acp.2017.02.00035
  48. Kattah NH, Kattah MG, Utz PJ. The U1-snRNP complex: structural properties relating to autoimmune pathogenesis in rheumatic diseases. Immunol Rev. 2010 Jan;233(1):126–45. doi: 10.1111/j.0105-2896.2009.00863.x
  49. Cozzani E, Drosera M, Gasparini G, Parodi A. Serology of Lupus Erythematosus: Correlation between Immunopathological Features and Clinical Aspects. Autoimmune Dis. 2014;2014:321359. doi: 10.1155/2014/321359
  50. Moore E, Putterman C. Are lupus animal models useful for understanding and developing new therapies for human SLE? J Autoimmun. 2020 Aug;112(1):102490. doi: 10.1016/j.jaut.2020.102490
  51. Celhar T, Fairhurst A-M. Modelling clinical systemic lupus erythematosus: similarities, differences and success stories. Rheumatology [Internet]. 2017 Apr 1;56(suppl_1):i88–99. doi: 10.1093/rheumatology/kew400
  52. Zhou T, Liao C, Li HY, Lin W, Lin S, Zhong H. Efficacy of mesenchymal stem cells in animal models of lupus nephritis: a meta-analysis. Stem Cell Res Ther. 2020;11(1):1–10. doi: 10.1186/s13287-019-1538-9
  53. Barbhaiya M, Costenbader KH. Environmental exposures and the development of systemic lupus erythematosus. Curr Opin Rheumatol. 2016;28(5):497-505. doi: 10.1097/BOR.0000000000000318

Last update:

No citation recorded.

Last update:

No citation recorded.