skip to main content

Mechanism of Immune System Dysfunction, Apoptosis and Oxidative Stress on Endometriosis

1Faculty of Medicine, Universitas Indonesia, Indonesia

2Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Indonesia

Received: 26 Dec 2022; Revised: 20 Jul 2023; Accepted: 4 Aug 2023; Available online: 31 Aug 2023; Published: 31 Aug 2023.
Open Access Copyright (c) 2023 Journal of Biomedicine and Translational Research
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Endometriosis is gynecology disease that still needs advance knowledge to develop best treatment for enhancing  the best quality of patient life. It is characterized by forming the endometrium tissue outside the uterus and happened approximately in 5-10% of reproductive women. Endometriosis with poor prognosis can be a high risk of endometrium cancer, ovarian cancer and results in infertility. A deep attempt to reach the knowledge of clear molecular etiology of endometriosis is needed. Here, there are three molecular mechanism dysfunction that occurs on endometriosis; (1) immune system dysfunction, (2) disturbance in apoptosis signal, (3) and oxidative stress elevation. Therefore, the determination of molecular pathogenesis of endometriosis will be useful in developing of diagnostic and therapeutic methods.

Fulltext View|Download
Keywords: Endometriosis; Immune Dysfunction; Apoptosis; Oxidative Stress

Article Metrics:

  1. Parveen Parasar, PhD, MVSc1,2, Pinar Ozcan, MD2, and Kathryn L. Terry S. Endometriosis: Epidemiology, Diagnosis and Clinical Management. Curr Obs Gynecol Rep. 2017;6(1):34–41. doi: 10.1007/s13669-017-0187-1
  2. Llarena NC, Falcone T, Flyckt RL. Fertility Preservation in Women With Endometriosis. Clin Med Insights Reprod Heal. 2019;13:117955811987338
  3. Symons LK, Miller JE, Kay VR, Marks RM, Liblik K, Koti M, et al. The Immunopathophysiology of Endometriosis. Trends Mol Med [Internet]. 2018;xx(yy):1–15. Available from: https://doi.org/10.1016/j.molmed.2018.07.004
  4. Cho YJ, Cho YJ, Lee SH, Park JW, Han M, Park MJ, et al. Dysfunctional signaling underlying endometriosis : current state of knowledge. J Mol Endrocrinology. 2018;60(3):97–113. https://doi.org/10.1530/JME-17-0227
  5. Chatterjee, Nimrat Walker G. Immune-inflammation gene signatures in endometriosis patients. Physiol Behav [Internet]. 2017;176(10):139–48. DOI: 10.1016/j.fertnstert.2016.07.005.Immune-inflammation
  6. Jørgensen H, Hill AS, Beste MT, Kumar MP, Chiswick E, Fedorcsak P, et al. Peritoneal fluid cytokines related to endometriosis in patients evaluated for infertility. Fertil Steril [Internet]. 2017 May;107(5):1191-1199.e2. Available from: https://dx.doi.org/10.1016/j.fertnstert.2017.03.013
  7. Miller JE, Ahn SH, Monsanto SP, Khalaj K, Koti M, Tayade C. Implications of immune dysfunction on endometriosis associated infertility. Oncotarget [Internet]. 2017;8(4):7138–47. Available from: www.impactjournals.com/oncotarget/. doi: 10.18632/oncotarget.12577
  8. Delbandi AA, Mahmoudi M, Shervin A, Heidari S, Kolahdouz-Mohammadi R, Zarnani AH. Evaluation of apoptosis and angiogenesis in ectopic and eutopic stromal cells of patients with endometriosis compared to non-endometriotic controls. BMC Womens Health. 2020;20(1):1–9. https://doi.org/10.1186/s12905-019-0865-4
  9. Laganà AS, Garzon S, Götte M, Viganò P, Franchi M, Ghezzi F, et al. The pathogenesis of endometriosis: Molecular and cell biology insights. Int J Mol Sci. 2019;20(22):1–42. DOI 10.1007/s00404-016-4195-6
  10. Cacciottola L, Donnez J, Dolmans MM. Can endometriosis‐related oxidative stress pave the way for new treatment targets? Int J Mol Sci. 2021;22(13). https://doi.org/ 10.3390/ijms22137138
  11. Young VJ, Ahmad SF, Duncan WC, Horne AW. The role of TGF-β in the pathophysiology of peritoneal endometriosis. Hum Reprod Update. 2017;23(5):548–59. doi: 10.1093/humupd/dmx016
  12. Ramírez-Pavez TN, Martínez-Esparza M, Ruiz-Alcaraz AJ, Marín-Sánchez P, Machado-Linde F, García-Peñarrubia P. The role of peritoneal macrophages in endometriosis. Int J Mol Sci. 2021;22(19). doi: 10.3390/ijms221910792
  13. Mei J, Chang KK, Sun HX. Immunosuppressive macrophages induced by IDO1 promote the growth of endometrial stromal cells in endometriosis. Mol Med Rep. 2017;15(4):2255–60. DOI: 10.3892/mmr.2017.6242
  14. Liang Y, Wu J, Wang W, Xie H, Yao S. Pro-endometriotic niche in endometriosis. Reprod Biomed Online [Internet]. 2019;38(4):549–59. Available from: https://doi.org/10.1016/j.rbmo.2018.12.025
  15. Takamura M, Koga K, Izumi G, Hirata T, Harada M, Hirota Y, et al. Simultaneous Detection and Evaluation of Four Subsets of CD4+ T Lymphocyte in Lesions and Peripheral Blood in Endometriosis. Am J Reprod Immunol. 2015;74(6):480–6. doi: 10.1111/aji.12426
  16. Olkowska-Truchanowicz J, Białoszewska A, Zwierzchowska A, Sztokfisz-Ignasiak A, Janiuk I, Dabrowski F, et al. Peritoneal fluid from patients with ovarian endometriosis displays immunosuppressive potential and stimulates th2 response. Int J Mol Sci. 2021;22(15). https://doi.org/ 10.3390/ijms22158134
  17. Li S, Fu X, Wu T, Yang L, Hu C, Wu R. Role of interleukin-6 and its receptor in endometriosis. Med Sci Monit. 2017;23:3801–7. DOI: 10.12659/MSM.905226
  18. de Barros IBL, Malvezzi H, Gueuvoghlanian-Silva BY, Piccinato CA, Rizzo LV, Podgaec S. “What do we know about regulatory T cells and endometriosis? A systematic review.” J Reprod Immunol [Internet]. 2017;120:48–55. Available from: http://dx.doi.org/10.1016/j.jri.2017.04.003
  19. Jeung IC, Cheon K, Kim MR. Decreased Cytotoxicity of Peripheral and Peritoneal Natural Killer Cell in Endometriosis. In: BioMed Research International. 2016. http://dx.doi.org/10.1155/2016/2916070
  20. Yeol SG, Won YS, Kim YI, Lee JW CY& PD. Decreased Bcl-6 and increased Blimp-1 in the peritoneal cavity of patients with endometriosis. Clin Exp Obstet Gynecol. 2015;42:156–60. DOI: 10.12891/ceog1818.2015
  21. Riccio LGC, Baracat EC, Chapron C, Batteux F, Abrão MS. The role of the B lymphocytes in endometriosis: A systematic review. J Reprod Immunol. 2017;123(August):29–34. http://dx.doi.org/10.1016/j.jri.2017.09.001
  22. Zubrzycka A, Zubrzycki M, Perdas E, Zubrzycka M. Genetic, epigenetic, and steroidogenic modulation mechanisms in endometriosis. J Clin Med. 2020;9(5). DOI: 10.3390/jcm9051309
  23. Abramiuk M, Grywalska E, Małkowska P, Sierawska O, Hrynkiewicz R, Niedźwiedzka-Rystwej P. The role of the Immune System in the Development of Endometriosis. Cells. 2022;11(13):1–23. http://dx.doi.org/ 10.1097/MD.0000000000014776
  24. Ocktariyana, Hikmawati N, Hestiantoro A, Muharam R, Marwali ML, Surur A, et al. Analysis of dna methylation level and mrna expression of transient receptor ankyrin member 1 (Trpa1) in endometriosis-associated pain. Asia-Pacific J Mol Biol Biotechnol. 2021;29(3):1–10. DOI: 10.5603/FHC.a2018.0013
  25. Annisa NG, Febri RR, Darmawi, Kinasih T, Muharam R, Asmarinah. Analysis of the methylation profiles of the steroidogenic factor-1 (SF-1) gene in peritoneal and ovarian endometriosis. J Phys Conf Ser. 2018;1073(3). DOI: 10.1177/1933719115594019
  26. García-Gómez E, Vázquez-Martínez ER, Reyes-Mayoral C, Cruz-Orozco OP, Camacho-Arroyo I, Cerbón M. Regulation of Inflammation Pathways and Inflammasome by Sex Steroid Hormones in Endometriosis. Front Endocrinol (Lausanne). 2020;10. DOI- 10.3389/fendo.2019.00935
  27. Eldafira E, Abinawanto A, Sjahfirdi L, Asmarinah A, Soeharso P, Muharam M, et al. Comparative study of estrogen receptor α, β mRNA expressions of endometriosis and normal endometrium in women and analysis of potential synthetic anti-estrogens in silico. J Biol Res. 2018;91(2):100–7. DOI: 10.4081/jbr.2018.7550
  28. Febri RR, , R Muharam Asmarinah. Promoter hypermethylation in progesterone receptor-A (PGR-A) and PGR-B gene decreased its mRNA expression in ovarian endometriosis. J Int Dent Med Res. 2019;12(1):232–7. ISSN 1309-100X http://www.jidmr.com
  29. Darmawi, M L S Marwali, R R Febri, R Muharam, A Hestiantoro, Asmarinah. DNA methylation of the progesterone receptor B ( PR-B ) gene promoter in human eutopic endometrium , ectopic peritoneum , and ovarian DNA methylation of the progesterone receptor B ( PR-B ) gene promoter in human eutopic endometrium , ectopic peritoneum ,. In: Journal of Physics: Conf. 2018. p. 1–5. DOI: doi:10.1088/1742-6596/1073/3/032079
  30. Machairiotis N, Vasilakaki S, Thomakos N. Inflammatory mediators and pain in endometriosis: A systematic review. Biomedicines. 2021;9(1):1–18. DOI: 10.3390/biomedicines9010054
  31. Ocktariyana, Hestiantoro A, Rahmala R, Asmarinah. DNA methylation of P2X3 receptor gene encoded pain marker protein in endometriosis. J Phys Conf Ser. 2019;1246(1):1–6. DOI: 10.1088/1742-6596/1246/1/012031
  32. Ke J, Ye J, Li M, Zhu Z. The role of matrix metalloproteinases in endometriosis: A potential target. Biomolecules. 2021;11(11):1–16. DOI: 10.3390/biom11111739
  33. Zahrah A, Muharam R, Luky Satria Marwali M, Ocktariyana, Deraya IE, Asmarinah. mRNA expression and DNA methylation level of the MMP-2 gene in peritoneal endometriosis. J Pak Med Assoc. 2021;71(2):S112–5. PMID: 33785954
  34. Vetvicka V, Laganà AS, Salmeri FM, Triolo O, Palmara VI, Vitale SG, et al. Regulation of apoptotic pathways during endometriosis: from the molecular basis to the future perspectives. Arch Gynecol Obstet. 2016;294(5):897–904. DOI 10.1007/s00404-016-4195-6
  35. Sang L, Fang QJ, Zhao XB. A research on the protein expression of p53, p16, and MDM2 in endometriosis. Med (United States). 2019;98(14):1–6. http://dx.doi.org/ 10.1097/MD.0000000000014776
  36. Amalinei C, Păvăleanu I, Lozneanu L, Balan R, Giuşcă SE, Căruntu ID. Endometriosis — Insights into a multifaceted entity. Folia Histochem Cytobiol. 2018;56(2):61–82. DOI: 10.5603/FHC.a2018.0013
  37. Sbracia M, Valeri C, Antonini G, Biagiotti G, Pacchiarotti A, Pacchiarotti A. Fas and fas-ligand in eutopic and ectopic endometrium of women with endometriosis: The possible immune privilege of ectopic endometrium. Reprod Sci. 2016;23(1):81–6. DOI: 10.1177/1933719115594019
  38. Scutiero G, Iannone P, Bernardi G, Bonaccorsi G, Spadaro S, Volta CA, et al. Oxidative Stress and Endometriosis: A Systematic Review of the Literature. Oxid Med Cell Longev. 2017;2017. https://doi.org/10.1155/2017/7265238
  39. Simopoulou M, Rapani A, Grigoriadis S, Pantou A, Tsioulou P, Maziotis E, et al. Getting to Know Endometriosis ‐ Related Infertility Better : A Review on How Endometriosis Affects Oocyte Quality and Embryo Development. 2021;9(3):1-22. DOI: 10.3390/biomedicines9030273
  40. Long J, Yang CS, He JL, Liu XQ, Ding Y Bin, Chen XM, et al. FOXO3a is essential for murine endometrial decidualization through cell apoptosis during early pregnancy. J Cell Physiol. 2019;234(4):4154–66. DOI: 10.1002/jcp.27167
  41. Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. 2018;1–18. https://doi.org/10.1186/s12958-018-0391-5

Last update:

No citation recorded.

Last update:

No citation recorded.