skip to main content

Hepatogomax Improves Serum Albumin and Transaminase Enzyme Activity Levels in Sprague Dawley Rats Liver Cirrhosis

1Departemen of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Indonesia

2Departement of Internal Medical, Faculty of Medicine, Universitas Diponegoro, Indonesia

3Departement of Pharmacology and Therapy, Faculty of Medicine, Universitas Diponegoro, Indonesia

Received: 5 Jul 2022; Revised: 7 Sep 2022; Accepted: 21 Sep 2022; Available online: 30 Dec 2022; Published: 30 Dec 2022.
Open Access Copyright (c) 2022 Journal of Biomedicine and Translational Research
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

ABSTRACT

Background: Patients with liver cirrhosis had liver cell damage and malnutrition risk. Hepatogomax enteral formula consists of soybean flour and goat’s milk flour which could reduce serum albumin, AST, and ALT levels because it contains BCAA amino acids (valine, leucine, and isoleucine) and MCT.

Objective: To examine the effect of Hepatogomax enteral formula based on Soybean flour and goat’s milk flour on serum albumin, AST, and ALT levels in Sprague Dawley rats liver cirrhosis.

Methods: The true experimental study – pre-post control group used 24 adult Sprague Dawley rats in 4 groups. Groups K(+), P1, and P2 were induced by Thioacetamide 400 mg/kgBW. The groups of  P1 and P2 were given the Hepatogomax enteral formula made from soybean flour and goat’s milk flour at a dose of 4.87 g/200gBW and 14.6 g/200gBW for 28 days. Serum albumin levels were determined using the Bromocresol Green (BCG) method while serum AST and ALT were determined using spectrophotometry. Statistical analysis had used Paired T-Test and Kruskal Wallis test with Mann Whitney follow-up test.

Results: Serum albumin, AST, and ALT levels in the P1 and P2 groups had significant differences (p<0.05) against the K(-) and K(+) groups. Enteral formula based on soybean flour and goat’s milk flour could increase serum albumin levels and reduce serum AST and ALT levels of P1 and P2 groups. The most significant improvement in serum albumin, AST, and ALT levels was at dose 14.6 g/200gBW.

Conclusion: Hepatogomax enteral formula based on Soybean flour and goat’s milk flour could increase serum albumin and redue AST, and ALT levels Sprague Dawley rats liver cirrhosis.

Note: This article has supplementary file(s).

Fulltext View|Download |  Ethical Clearance
Ethical Clearance
Subject
Type Ethical Clearance
  View (1MB)    Indexing metadata
 Cover Letter
Cover Letter
Subject
Type Cover Letter
  Download (31KB)    Indexing metadata
 Copyright Transfer Agreement
CTA Article Hepatogomax_Refani Alycia Kusuma
Subject Hepatogomax Improves Serum Albumin and Transaminase Enzymes Activity Levels in Sprague Dawley Rats Liver Cirrhosis
Type Copyright Transfer Agreement
  Download (675KB)    Indexing metadata
Keywords: Liver Cirrhosis; Hepatogomax; Albumin; Transaminase Enzyme Activity

Article Metrics:

  1. Kim HJ, Lee HK, Cho JH. Factor analysis of the biochemical markers related to liver cirrhosis. Pakistan J Med Sci [Internet]. 2015;31(5):1043–6. Available from: http://dx.doi.org/10.12669/pjms.315.8025
  2. Sepanlou SG, Safiri S, Bisignano C, Ikuta KS, Merat S, Saberifiroozi M, et al. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol [Internet]. 2020;5(3):245–66. Available from: https://doi.org/10.1016/ S2468-1253(19)30349-8
  3. Saunders J, Brian A, Wright M, Stroud M. Malnutrition and nutrition support in patients with liver disease. Frontline Gastroenterol [Internet]. 2010;1(2):105–11. Available from: http://dx.doi.org/10.1136/fg.2009.000414
  4. Cheung K, Lee SS, Raman M. Prevalence and mechanisms of malnutrition in patients with advanced liver disease, and nutrition management strategies. Clin Gastroenterol Hepatol [Internet]. 2012;10(2):117–25. Available from: http://dx.doi.org/10.1016/j.cgh.2011.08.016
  5. Eghtesad S, Poustchi H, Malekzadeh R. Malnutrition in liver cirrhosis:the influence of protein and sodium. Middle East J Dig Dis. 2013;5(2):65–75
  6. Traub J, Reiss L, Aliwa B, Stadlbauer V. Malnutrition in patients with liver cirrhosis. Nutrients [Internet]. 2021;13(2):1–19. Available from: http://dx.doi.org/10.3390/nu13020540
  7. Periyalwar P, Dasarathy S. Malnutrition in cirrhosis: contribution and consequences of sarcopenia on metabolic and clinical responses. Clin Liver Dis [Internet]. 2012;16(1):95–131. Available from: http://dx.doi.org/10.1016/j.physbeh.2017.03.040
  8. Sidiq T. Nutrient requirements of patients with liver cirrhosis. Curr Trends Biomed Eng Biosci [Internet]. 2017;4(4):73–5. Available from: http://dx.doi.org/10.19080/ctbeb.2017.04.555645
  9. Araújo-Junqueira L, De-Souza DA. Enteral nutrition therapy for critically ill adult patients; critical review and algorithm creation. Nutr Hosp [Internet]. 2012;27(4):999–1008. Available from: http://dx.doi.org/10.3305/nh.2012.27.4.5840
  10. Rahmadanti TS, Candra A, Nissa C. Pengembangan formula enteral hepatogomax untuk penyakit hati berbasis tepung kedelai dan tepung susu kambing. J Gizi Indones [Internet]. 2020;9(1):1–10. Available from: http://dx.doi.org/10.14710/jgi.9.1.1-10
  11. Klek S, Hermanowicz A, Dziwiszek G, Matysiak K, Szczepanek K, Szybinski P. Home enteral nutrition reduces complications, length of stay, and health care costs: results from a multicenter study. Am J Clin Nutr [Internet]. 2014;100(2):609–15. Available from: http://dx.doi.org/10.3945/ajcn.113.082842
  12. Kang SW, Rahman MS, Kim AN, Lee KY, Park CY, Kerr WL, et al. Comparative study of the quality characteristics of defatted soy flour treated by supercritical carbon dioxide and organic solvent. J Food Sci Technol [Internet]. 2017;54(8):2485–93. Available from: http://dx.doi.org/10.1007/s13197-017-2691-8
  13. Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. Transl Gastroenterol Hepatol [Internet]. 2018;3(July):1–11. Available from: http://dx.doi.org/10.21037/tgh.2018.07.06
  14. Haenlein GFW. Goat milk in human nutrition. Small Rumin Res [Internet]. 2004;51(2):155–63. Available from: http://dx.doi.org/10.1016/j.smallrumres.2003.08.010
  15. Fukui H, Saito H, Ueno Y, Uto H, Obara K, Sakaida I, et al. Evidence-based clinical practice guidelines for liver cirrhosis 2015. J Gastroenterol [Internet]. 2016;51(7):629–50. Available from: http://dx.doi.org/10.1007/s00535-016-1216-y
  16. Brestenský M, Nitrayová S, Patráš P, Heger J, Nitray J. Branched chain amino acids and their importance in nutrition. J Microbiol Biotechnol Food Sci [Internet]. 2015;5(2):197–202. Available from: http://dx.doi.org/10.15414/jmbfs.2015.5.2.197-202
  17. Getaneh G, Mebrat A, Wubie A, Kendie H. Review on goat milk composition and its nutritive value. J Nutr Heal Sci [Internet]. 2016;3(4):1–11. Available from: http://dx.doi.org/10.15744/2393-9060.3.401
  18. Nilesh MR, Vilas PA, Ambadas JS, Nilesh M. Formulation development of enteral nutrition products. Int Res J Pharm. 2011;2(3):19–28
  19. Kabiri N, Darabi MA, Kopaei MR, Setorki M, Doudi M. Protective effect of Kombucha Tea on liver damage induced by Thioacetamide. J Biol Sci [Internet]. 2014;14(5):343–8. Available from: http://dx.doi.org/10.3923/jbs.2014.343.348
  20. Herck H, Baumans V, Brandt C, Boere H, Hesp A, Lith H, et al. Blood sampling from the retro-orbital plexus, the saphenous vein and the tail vein in rats: Comparative effects on selected behavioural and blood variables. Lab Anim [Internet]. 2001;35(2):131–9. Available from: http://dx.doi.org/10.1258/0023677011911499
  21. Plauth M, Bernal W, Dasarathy S, Merli M, Plank LD, Schütz T, et al. ESPEN guideline on clinical nutrition in liver disease. Clin Nutr [Internet]. 2019;38(2):485–521. Available from: http://dx.doi.org/10.1016/j.clnu.2018.12.022
  22. Levitt DG, Levitt MD. Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int J Gen Med [Internet]. 2016;9:229–55. Available from: http://dx.doi.org/10.2147/IJGM.S102819
  23. Carvalho JR, Machado MV. New insights about albumin and liver disease. Ann Hepatol [Internet]. 2018;17(4):547–60. Available from: http://dx.doi.org/10.5604/01.3001.0012.0916
  24. de Mattos AA. Current indications for the use of albumin in the treatment of cirrhosis. Ann Hepatol [Internet]. 2011;10(1):S15–20. Available from: http://dx.doi.org/10.1016/s1665-2681(19)31601-1
  25. Bernardi M, Maggioli C, Zaccherini G. Human albumin in the management of complications of liver cirrhosis. Crit Care [Internet]. 2012;16(2):29–37. Available from: http://dx.doi.org/10.1007/978-3-642-25716-2
  26. El-Baz FK, Salama AAA, Hussein RA. Dunaliella salina microalgae oppose thioacetamide-induced hepatic fibrosis in rats. Toxicol Reports [Internet]. 2020;7(2020):36–45. Available from: http://dx.doi.org/10.1016/j.toxrep.2019.10.017
  27. Wallace M, Hamesch K, Lunova M, Kim Y, Weiskirchen R, Strnad P, et al. Standard operating procedures in experimental liver research: Thioacetamide model in mice and rats. Lab Anim [Internet]. 2015;49:21–9. Available from: http://dx.doi.org/10.1177/0023677215573040
  28. Fanali G, Di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: From bench to bedside. Mol Aspects Med [Internet]. 2012;33(3):209–90. Available from: http://dx.doi.org/10.1016/j.mam.2011.12.002
  29. Infusino I, Panteghini M. Serum albumin: Accuracy and clinical use. Clin Chim Acta [Internet]. 2013;419:15–8. Available from: http://dx.doi.org/10.1016/j.cca.2013.01.005
  30. Vincent JL. Relevance of albumin in modern critical care medicine. Best Pract Res Clin Anaesthesiol [Internet]. 2009;23(2):183–91. Available from: http://dx.doi.org/10.1016/j.bpa.2008.11.004
  31. Brenner DA, Buck M, Feitelberg SP, Chojkier M. Tumor necrosis factor-α inhibits albumin gene expression in a murine model of cachexia. J Clin Invest [Internet]. 1990;85(1):248–55. Available from: http://dx.doi.org/10.1172/JCI114419
  32. Uchino Y, Watanabe M, Takata M, Amiya E, Tsushima K, Adachi T, et al. Effect of Oral Branched-Chain Amino Acids on Serum Albumin Concentration in Heart Failure Patients with Hypoalbuminemia: Results of a Preliminary Study. Am J Cardiovasc Drugs [Internet]. 2018;18(4):327–32. Available from: http://dx.doi.org/10.1007/s40256-018-0269-0
  33. Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. World J Gastroenterol [Internet]. 2013;19(43):7620–9. Available from: http://dx.doi.org/10.3748/wjg.v19.i43.7620
  34. Kuwahata M, Kubota H, Katsukawa M, Ito S, Ogawa A, Kobayashi Y. Effect of branched chain amino acid supplementation on the oxidized / reduced state of plasma albumin in rats with chronic liver disease. J Clin Biochem Nutr [Internet]. 2012;50(1):67–71. Available from: http://dx.doi.org/10.3164/jcbn.11-37
  35. Iwasa M, Kobayashi Y, Mifuji-Moroka R, Hara N, Miyachi H, Sugimoto R, et al. Branched-chain amino acid supplementation reduces oxidative stress and prolongs survival in rats with advanced liver cirrhosis. PLoS One [Internet]. 2013;8(7):1–11. Available from: http://dx.doi.org/10.1371/journal.pone.0070309
  36. Kurniawati I, Nurmasitoh T, Nur Yahya T. Effect of giving ethanol multistep doses to level of SGPT and SGOT in wistar rats (Rattus norvegicus). J Kedokt dan Kesehat Indones [Internet]. 2015;7(1):30–5. Available from: http://dx.doi.org/10.20885/jkki.vol7.iss1.art6
  37. Nallagangula KS, Nagaraj SK, Venkataswamy L, Chandrappa M. Liver fibrosis: A compilation on the biomarkers status and their significance during disease progression. Futur Sci OA [Internet]. 2018;4(1):1–16. Available from: http://dx.doi.org/10.4155/fsoa-2017-0083
  38. Washington IM, Hoosie. Clinical biochemistry and hematology. In: The Laboratory Rabit, Guinea Pig, Hamster, and Other Rodents. Washington, USA: Elsevier Inc; 2012. p. 57–116
  39. Raval N, Kalyane D, Maheswari R, Tekade R. Surface modifications of biomaterials and their implication on biocompatibility. In: Biomaterials and Bionanotevhnology. India: Elsevier Inc; 2019. p. 639–75
  40. Sohn W, Jun DW, Kwak MJ, Park Q, Lee KN, Lee HL, et al. Upper limit of normal serum alanine and aspartate aminotransferase levels in Korea. J Gastroenterol Hepatol [Internet]. 2013;28(3):522–9. Available from: http://dx.doi.org/10.1111/j.1440-1746.2012.07143.x
  41. York M. Chapter 14. Clinical pathology. In: A Comprehensive Guide to Toxicology in Nonclinical Drug Development. 2nd Editio. USA: Elsevier Inc.; 2017. p. 325–74
  42. Juárez-hernández E, Chávez-tapia NC, Uribe M, Barbero-becerra VJ. Role of bioactive fatty acids in nonalcoholic fatty liver disease. Nutr J [Internet]. 2016;15(72):1–10. Available from: http://dx.doi.org/10.1186/s12937-016-0191-8
  43. Aoyama T, Nosaka N, Kasai M. Research on the nutritional characteristics of medium-chain fatty acids. J Med Investig [Internet]. 2007;54(3–4):385–8. Available from: http://dx.doi.org/10.2152/jmi.54.385
  44. Miko N, Raw P, Faculty M, Sciences F. Coconut oil in human diet – nutrition value and potential health benefits. J Educ Heal Sport [Internet]. 2017;7(9):307–19. Available from: http://dx.doi.org/10.5281/zenodo.997464
  45. Zakaria ZA, Rofiee MS, Somchit MN, Zuraini A, Sulaiman MR, Teh LK, et al. Hepatoprotective activity of dried- and fermented-processed virgin coconut oil. Evidence-based Complement Altern Med [Internet]. 2011;2011(142739):1–8. Available from: http://dx.doi.org/10.1155/2011/142739
  46. Ronis MJJ, Baumgardner JN, Sharma N, Vantrease J, Ferguson M, Tong Y, et al. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of non-alcoholic fatty liver disease. Exp Biol Med. 2013;238(2):151–62
  47. Miglani S, Patyar RR, Patyar S, Reshi MR. Effect of goat milk on hepatotoxicity induced by antitubercular drugs in rats. J Food Drug Anal [Internet]. 2016;24(4):716–21. Available from: http://dx.doi.org/10.1016/j.jfda.2016.03.012

Last update:

No citation recorded.

Last update:

No citation recorded.