skip to main content

Evaluasi Perancangan Pengering Surya Hibrid untuk Produk Pertanian dan Pangan

*S Suherman  -  Departemen Teknik Kimia, Fakultas Teknik, Universitas Diponegoro, Indonesia
W Widayat  -  Departemen Teknik Kimia, Fakultas Teknik, Universitas Diponegoro, Indonesia
Silviana Silviana  -  Departemen Teknik Kimia, Fakultas Teknik, Universitas Diponegoro, Indonesia
Open Access Copyright (c) 2022 Indonesia Journal of Halal under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Salah satu aspek penting dalam ketahanan pangan adalah sistem pengolahan pasca panen untuk mempertahankan masa simpan produk pertanian dan pangan. Pengeringan adalah salah satu pendekatan tertua dan paling efisien untuk tujuan tersebut. Potensi energi matahari yang sangat besar di Indonesia menjadikan teknologi pengering surya hybrid sangat potensial untuk dikembangkan. Dalam penelitian ini, perancangan dan evaluasi terhadap pengering surya hibrid untuk produk pertanian dan  pangan, baik sekala lab maupun sekala industri akan dilakukan. Dalam penelitian ini produk pertanian yang digunakan sebagai bahan pengujian adalah jahe, sohun, chip mocaf, dan bawang merah. Parameter yang digunakan untuk mengukur kinerja alat pengering adalah kurva pengeringan, dan efisiensi alat pengering. Hasil penelitian menunjukkan bahwa perancangan pengering surya langsung hibrid Gas LPG, pengering surya tak langsung hibrid Gas LPG, dan pengering surya langsung hibrid Biomass, telah berhasil dan bisa mengeringkan produk pangan dan pertanian, dalam hal ini jahe, chip mocaf, dan bawang merah. Kadar air produk pangan dan pertanian yang dikeringkan telah memenuhi standar. Efisiensi alat pengering semakin menurun dengan bertambahnya waktu proses pengeringan.

 

Abstract

 [Title: Design Evaluation of Hybrid Solar Dryer for Agricultural and Food Products] One important aspect of food security is the post-harvest processing system to maintain the shelf life of agricultural and food products. Drying is one of the oldest and most efficient approaches for the purpose. The enormous potential for solar energy in Indonesia makes hybrid solar dryer technology very potential to be developed. In this research, the design and evaluation of hybrid solar dryers for agricultural and food products, both on a lab scale and on an industrial scale, will be carried out. In this study the agricultural products used as test materials were ginger, vermicelli, mocaf chips, and shallots. The parameters used to measure the performance of the dryer are the drying curve and the efficiency of the dryer. The results showed that the design of LPG gas hybrid direct solar dryer, LPG gas hybrid indirect solar dryer, and Biomass hybrid direct solar dryer, has been successful and can dry food and agricultural products, in this case ginger, mocaf chips, and shallots. The moisture content of dried food and agricultural products meets the standards. The efficiency of the dryer decreases with increasing drying time.

 

Fulltext
Keywords: Agriculture; Foods; Hybrid dryer; Preservation; Solar energy

Article Metrics:

  1. Aggarwal, R.K. Shyam Singh Chandel, Shiva Gorjian, Rahul Chandel (2022), Research outcome of sustainable solar drying technology dissemination for preserving perishable agriculture and horticulture crops in the North Western Himalayan region of India, Sustainable Energy Technologies and Assessments, Volume 53, Part C, October 2022
  2. Alara, O. R., Abdurahman, N. H., & Olalere, O. A. (2019). Mathematical modelling and morphological properties of thin layer oven drying of Vernonia amygdalina leaves. Journal of the Saudi Society of Agricultural Sciences, 18(3), 309–315. https://doi.org/10.1016/j.jssas.2017.09.003
  3. Alibas, I, Microwave, air and combined microwave–air-drying parameters of pumpkin slices. LWT-food Sci. Technol. 40(8), 1445–1451 (2007)
  4. Aviara, NA, Lovelyn N. Onuoha, Oluwakemi E. Falola, and Joseph C. Igbeka. Energy and exergy analyses of native cassava starch drying in a tray dryer. Energy, 73:809–817, 2014
  5. Badaoui, Ouassila, Ahmed Djebli, Salah Hanini, (2022), Solar drying of apple and orange waste: Evaluation of a new thermodynamic approach, and characterization analysis, Renewable Energy, Volume 199, November 2022, Pages 1593-1605
  6. Bell, M.T., 2008, Food Drying with an Attitude Skyhorse
  7. Bosomtwe, A., J. K. Danso, E. A. Osekre, G. P. Opit, G. Mbata, P. Armstrong, F. H. Arthur, J. Campbell, N. Manu, S. G. McNeill, and J. O. Akowuah. Effectiveness of the solar biomass hybrid dryer for drying and disinfestation of maize. Journal of Stored Products Research, 83:66–72, 2019
  8. Cetina-Quinones, A. J., Lopez, J. L., Ricalde-cab, L., Mekaoui, A. El, San-pedro, L., & Bassam, A. (2021). Experimental evaluation of an indirect type solar dryer for agricultural use in rural communities : Relative humidity comparative study under winter season in tropical climate with sensible heat storage material. Solar Energy, 224(February), 58–75. https://doi.org/10.1016/j.solener.2021.05.040
  9. David Gudiño-Ayala and Ángel Calderón-Topete. Pineapple drying using a new solar hybrid dryer. Energy Procedia, 57:1642–1650, 2014
  10. Deshmukh, AW, Mahesh N. Varma, Chang Kyoo Yoo, and Kailas L. Wasewar. Investigation of Solar Drying of Ginger ( Zingiber officinale ): Emprical Modelling, Drying Characteristics, and Quality Study. Chinese Journal of Engineering, 2014:1–7, 2014
  11. Dhanushkodi,S., Vincent H Wilson, and K Sudhakar. Design and thermal performance of the solar biomass hybrid dryer for cashew drying. Facta universitatisseries: Mechanical Engineering, 12(3):277–288, 2014
  12. Duc Pham N., et al., Quality of plant-based food materials and its prediction during intermittent drying. Crit. Rev. Food Sci. Nutr. 59(8), 1197–1211 (2019)
  13. Ertekin, C., & Firat, M. Z. (2017). A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57(4), 701–717. https://doi.org/10.1080/ 10408398.2014.910493
  14. Fudholi, A Kamaruzzaman Sopian, Mohd Yusof Othman, and Mohd Hafidz Ruslan. Energy and exergy analyses of solar drying system of red seaweed. Energy and Buildings, 68(PARTA):121–129, 2014
  15. Gupta, S., Cox, S., & Abu-Ghannam, N. (2011). Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed. LWT - Food Science and Technology, 44(5), 1266–1272. https://doi.org/10.1016/j.lwt.2010.12.022
  16. Hii, A.S.M.,, C.L., Jangam, S.V., Ong, S.P., Solar Drying: Fundamentals,Applications and Innovations. 2012
  17. Janjai S, Lamlert N, Intawee P, Mahayothee B, Boonrod Y, et al. (2009) Solar drying of peeled longan using a side loading type solar tunnel dryer: experimental and simulated performance. Drying Technology 27: 595-605
  18. Joardder, M.U.H., R.J. Brown, C. Kumar, M.A. Karim, Effect of cell wall properties on porosity and shrinkage of dried apple. Int. J. Food Prop. 18(10), 2327–2337 (2015)
  19. Karim, M.A. , M.N.A. Hawlader, Mathematical modelling and experimental investigation of tropical fruits drying. Int. J. Heat Mass Transf. 48(23), 4914–4925 (2005)
  20. Khanuengnit Chapchaimoh, Nattapol Poomsa-Ad, Lamul Wiset, and John Morris. Thermal characteristics of heat pump dryer for ginger drying. Applied Thermal Engineering, 95:491–498, 2016
  21. Koyuncu, T, İ. Tosun, Y. Pınar, Drying characteristics and heat energy requirement of cornelian cherry fruits (Cornus mas L.). J. Food Eng. 78(2), 735–739 (2007)
  22. Kumar, C, M.U.H. Joardder, T.W. Farrell, M.A. Karim, Investigation of intermittent microwave convective drying (IMCD) of food materials by a coupled 3D electromagnetics and multiphase model. Dry. Technol. 36(6), 736–750 (2018)
  23. Lakshmi, D. V. N., Muthukumar, P., & Nayak, P. K. (2021). Experimental investigations on active solar dryers integrated with thermal storage for drying of black pepper. Renewable Energy, 167, 728–739. https://doi.org/10.1016/j.renene.2020.11.144
  24. Leon MA, Kumar S (2008) Design and Performance Evaluation of a Solar-Assisted Biomass Drying System with Thermal Storage. Drying Technology 26: 936-947
  25. López-Vidaña, E. C., Pilatowsky Figueroa, I., Antonio Marcos, E. G., Navarro-Ocaña, A., Hernández-Vázquez, L., & Santiago-Urbina, J. A. (2019). Solar drying kinetics and bioactive compounds of blackberry (Rubus fruticosus). Journal of Food Process Engineering, 42(4), 1–9. https://doi.org/10.1111/jfpe.13018
  26. Masud, MH, Karim, A, Ananno, AA, Ahmed A, 2019, Sustainable Food Drying Techniques in Developing Countries: Prospects and Challenges, Springer
  27. Mawa BW, Mullinix BG (2005) Moisture loss of sweet onions during curing. Postharvest Biol Technol 35: 223–227
  28. Mokhtarian, M., Tavakolipour, H., & Kalbasi-Ashtari, A. (2016). Energy and exergy analysis in solar drying of pistachio with air recycling system. Drying Technology, 34(12), 1484–1500. https://doi.org/10.1080/ 07373937.2015.1129499
  29. Mortezapour, H., Ghobadian, B., Minaei, S., & Khoshtaghaza, M. H. (2012). Saffron drying with a heat pump-assisted hybrid photovoltaic-thermal solar dryer. Drying Technology, 30(6), 560–566. https://doi.org/10. 1080/07373937.2011.645261
  30. Moussaoui, H., Bahammou, Y., Tagnamas, Z., Kouhila, M., Lamharrar, A., & Idlimam, A. (2021). Application of solar drying on the apple peels using an indirect hybrid solar-electrical forced convection dryer. Renewable Energy, 168, 131–140. https://doi.org/10.1016/j.renene.2020.12.046
  31. Murali, S., P. R. Amulya, P. V. Alfiya, D. S.Aniesrani Delfiya, and Manoj P. Samuel. Design and performance evaluation of solar - LPG hybrid dryer for drying of shrimps. Renewable Energy, 147:2417–2428, 2020
  32. Orsat, V, W. Yang, V. Changrue, G.S.V. Raghavan, Microwave-assisted drying of biomaterials. Food Bioprod. Process. 85(3), 255–263 (2007)
  33. Rabha, DK, P. Muthukumar, and C. Somayaji. Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger. Renewable Energy, 105:764–773, 2017
  34. Reyes, Alejandro, Andrea Mahn, and Francisco Vásquez. Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Conversion and Management, 83:241–248, 2014
  35. Sharma, A., C. R. Chen, and N. Vu Lan, “Solar-energy drying systems: A review,” Renewable and Sustainable Energy Reviews, vol. 13, no. 6–7. 2009, doi: 10.1016/j.rser.2008.08.015
  36. Strøm, K. (2011). Product quality in solar dried carrots, tomatoes and onions, Ås, Norway: Norwegian University of Life Sciences
  37. Suherman Suherman and Nur Hidayati. Performance Evaluation of Pneumatic Dryer for Aren (Arenga piñata) Flour. In The 24th Regional Symposium on Chemical Engineering (RSCE 2017), volume 156, page 05023, Semarang, 2018. MATEC Web of Conferences
  38. Suherman Suherman, Mohammad Djaeni, Dyah H. Wardhani, Mukhtar R. Dzaki, and Muhammad N.F. Bagas. Performance Analysis of Solar Tray Dryer for Cassava Starch. MATEC Web of Conferences, 156:0–3, 2018
  39. Suherman, S, H. Hadiyanto, E. E. Susanto, S. A. Rahmatullah, and A. R. Pratama, “Towards an optimal hybrid solar method for lime-drying behavior,” Heliyon, vol. 6, no. 10, 2020, doi: 10.1016/j.heliyon.2020.e05356
  40. Tsotsas, E and A. S. Mujumdar, Modern Drying Technology, vol. 1–4. 2014
  41. Yahya, M., Fudholi, A., Hafizh, H., & Sopian, K. (2016). Comparison of solar dryer and solar-assisted heat pump dryer for cassava. Solar Energy, 136, 606–613. https://doi.org/10.1016/j.solener.2016.07.049
  42. Yassen, TA and Al-Kayiem, HH (2016) Experimental investigation and evaluation of hybrid solar/thermal dryer combined with supplementary recovery dryer. Solar Energy 134. Elsevier ltd: 284–293. https://doi. org/10.1016/j.solener.2016.05.01

Last update:

No citation recorded.

Last update:

No citation recorded.