skip to main content

Penghilangan Limbah Kromium dengan Teknik Kombinasi Microbial Fuel Cell SV-30 dan Adsorpsi Zeolit Y Hierarki

*Alvin Romadhoni Putra Hidayat orcid scopus  -  Department of Chemistry, Universitas Diponegoro, Indonesia
Pramastuti Adiar Rukmi  -  Department of Chemistry, Universitas Diponegoro, Indonesia
Salsabila Salsabila  -  Department of Chemistry, Universitas Diponegoro, Indonesia
Irmariza Shafitri Caralin  -  Department of Applied Chemistry, Shibaura Institute of Technology, Japan
Alvin Rahmad Widyanto  -  Department of Applied Chemistry, Shibaura Institute of Technology, Japan
Open Access Copyright 2025 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Industri elektroplating menghasilkan limbah berbahaya seperti kromium heksavalen (Cr(VI)) yang dapat membahayakan kesehatan manusia. Salah satu metode potensial untuk mengatasi masalah ini adalah penggunaan microbial fuel cell biovolta-adsorpsi. Metode ini menggunakan konsorsium bakteri SV-30 sebagai biovolta untuk mereduksi Cr(VI) menjadi Cr(III), kemudian zeolit Y hierarki digunakan untuk mengadsorpsi Cr(VI) maupun Cr(III) hasil dari proses biovolta. Zeolit Y dimodifikasi menjadi zeolit Y hierarki dengan variasi konsentrasi NaOH sebesar 0,125 M, 0,25 M, dan 0,5 M guna meningkatkan kinerja adsorpsi, serta dikarakterisasi dengan XRD, FTIR, SEM, dan BET. Keunggulan dari metode ini adalah kemampuan bakteri SV-30 dalam mereduksi Cr(VI) sambil menghasilkan arus listrik. Setelah itu, kromium sepenuhnya diadsorpsi oleh zeolit Y dan zeolit Y hierarki. Hasil adsorpsi kromium menggunakan metode MFC berada di bawah ambang batas standar kualitas limbah cair sebagaimana tercantum dalam Keputusan Menteri Lingkungan Hidup No. KEP-51/MENLH/10/1995. Selain itu, metode ini juga menghasilkan potensi listrik sebesar 32 mW/m². Kinerja adsorpsi terbaik diperoleh pada modifikasi zeolit dengan NaOH 0,25 M, dengan kadar total kromium sebesar 0,21 mg/L dan kadar Cr(VI) sebesar 0,01 mg/L. MFC juga mampu menurunkan nilai COD dan BOD yang terkandung dalam limbah.

Fulltext View|Download
Keywords: MFC-adsorpsi, Cr(VI), Konsorsium bakteri, Zeolit Y Hierarki, Desilikasi

Article Metrics:

  1. Chunyan. L.,Tongyang. L., Wanjun. L., Hailian Z., Yi. C., Dapeng L. 2017. Efficient degradation of chlorimuron-ethyl by a bacterial consortium and shifts in the aboriginal microorganism community during the bioremediation of contaminated-soil. Ecotoxicology and Environmental Safety. 139: 423 – 430
  2. Feliczak-Guzik, A. 2017. Hierarchical Zeolite: Synthesis and catalytic properties. Microporous and Mesoporous Material, 259:33-45
  3. Hwang, Hyun Tae dan Varma, Arvind. 2014. Hydrogen Storage for Fuel Cell Vehicles. Current Opinion in Chemical Engineering. 5:42-48
  4. Kayadoe V. 2013. Sintesis dan Karakterisasi Karbon Tertemplat Zeolit NaY dengan Prekursor Sukrosa sebagai material Penyimpan Hidrogen”. Thesis, Institut Teknologi Sepuluh Nopember Surabaya
  5. Kim KY, Yang WL, Evans PJ, Logan BE. 2016. Continuous treatment of high strength wastewaters using air-cathode microbial fuel cells. Bioresour Technol. 221:96–101
  6. Konwar, R J, dan De, M. 2016. Nitrogen modified templated carbons for energy application: Effect of templates and nitrogen precursors. International Journal of Hydrogen Energy. 30:1-10
  7. Lee Y, Bae S, Moon C, Lee W. 2015. Flavin mononucleotide mediated microbial fuel cell in the presence of Shewanella putrefaciens CN32 and iron-bearing mineral. Biotechnol Bioprocess Eng. 20:894–900
  8. Li, G. 2005. FT-IR studies of zeolite materials: characterization and environmental applications. Iowa : University of Iowa
  9. Li, W., Zheng, J., Luo, Y., Tu, C., Zhang, Y., & Da, Z. (2017). Hierarchical Zeolite Y with Full Crystallinity: Formation Mechanism and Catalytic Cracking Performance. Energy and Fuels, 31: 3804–3811
  10. Liu. C., Fiola. N., Pochc. J., Villaescusaa. I. 2016. A new technology for the treatment of chromium electroplating wastewater based on biosorption. Journal of Water Process Engineering. 11: 143-151
  11. Mahmoud. A. M., Abd El-Twab. S. M. 2017. Caffeic acid phenethyl ester protects the brain against hexavalent chromium toxicity by enhancing endogenous antioxidants and modulating the JAK/STAT signaling pathway. Biomedicine & Pharmacotherapy. 91: 303-311
  12. Mehdinia A, Ziaei E, Jabbari A. 2014. Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation. Int J Hydrog Energy. 39:10724–30
  13. Mohanakrishna G, Abu-Reesh IM, Al-Raoush RI, He Z. 2018. Cylindrical graphite based microbial fuel cell for the treatment of industrial wastewaters and bioenergy generation. Bioresour Technol. 247:753–8
  14. Parkash A. 2016. Microbial fuel cells: a source of bioenergy. J Microb Biochem Technol. 8:247–55
  15. Ravikumar. K. V. G., Sudakaran. S.V., Pulimi. M., Natarajan. C., Mukherjee. A. 2018. Removal of hexavalent chromium using nano zero valent iron and bacterial consortium immobilized alginate beads in a continuous flow reactor. Environmental Technology & Innovation. 12: 104 - 114
  16. Rubcumintara. T. 2014. Chromium and iron removal for hard chrome bath recyclingusing eggshell sorbent. J. Clean Energy Technol. 2: 158–162
  17. Slate. A. J., Whitehead. K. A., Brownson. D. A. C., Banks. C. E. 2019. Microbial fuel cells: An overview of current technology. Renewable and Sustainable Energy Reviews. 101: 60-81
  18. Setyaningsih. E. P., Rachman. A. R., Martia. U. T. I., Widyanto. A. R., Iqbal. R.M., Widiastuti. N. 2019. The MnO2/Zeolite NaY Catalyzed Oxidation of CO Emission in Catalytic Converter System. Materials Science Forum. 964: 199-208
  19. Sharma. S., Malaviya. P. 2016. Bioremediation of tannery wastewater by chromium resistant novelfungal consortium. Ecological Engineering. 91: 419 – 425
  20. Shen H-B, Yong X-Y, Chen Y-L, Liao Z-H, Si R-W, Zhou J. 2014. Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosainoculated microbial fuel cells. Bioresour Technol. 167:490–4
  21. Szeląg. B., Gawdzik. J., Studziński. J. 2017. Sludge Volume Index (SVI) Modelling: Data Mining Approach. Proceedings of 38th International Conference on Information Systems Architecture and Technology
  22. Tamboli. E., Eswari. J. S. 2019. Microbial Fuel Cell Configurations. Microbial Electrochemical Technology. 407–435
  23. Wang. X., Zheng. Q., Yuan. Y., Hai. R., Zou. D. 2017. Bacterial community and molecular ecological network in response to Cr2O3 nanoparticles in activated sludge system. Chemosphere. 188: 10-17

Last update:

No citation recorded.

Last update:

No citation recorded.