skip to main content

Koloid Karbon Aktif untuk Meningkatkan Efisiensi Penggunaan Minyak Atsiri Bunga Lavender sebagai Material Terapiaroma: Studi Tekanan Uap, Kinetika, dan Termodinamika Adsorpsi

Jihan Rosyadah  -  Pemerintah Desa Jekulo, Jln Raya Pati – Kudus No. 197, Kec. Jekulo, Kab. Kudus, Jawa Tengah, Indonesia
*Pratama Jujur Wibawa orcid scopus publons  -  Department of Chemistry Faculty of Sciences and Mathematics Diponegoro University, Indonesia
Enny Fachriyah  -  Laboratorium Kimia Organik, Departemen Kimia, Fakultas Sains dan Matematika, Universitas Diponegoro, Jl. Prof. H. Soedarto, SH, No.1 Kompleks Kampus Undip Tembalang Semarang., Indonesia
Open Access Copyright 2025 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Minyak atsiri bunga lavender  merupakan salah satu bahan penting terapi aroma, pengharum ruangan, dan bahan prekursor obat. Untuk meningkatkan efisiensi daya gunanya, perlu diberi tambahan bahan penjerap/adsorben yang unggul, yakni karbon aktif mikro-partikel. Penelitian ini bertujuan untuk menentukan rasio volum (v/v) optimal campuran minyak atsiri-koloid karbon aktif yang memberikan efisiensi adsorpsi tertinggi, menentukan model kinetika, dan besaran-besarn termodinamikanya. Untuk itu, penelitian dilakukan dengan membuat variasi perbandingan volume campuran minyak atsiri-koloid karbon aktif adalah 1:1, 1:2, 2:1, 1:3 dan 3:1; variasi suhu termodinamika dan tekanan uap adalah 30, 31, 32, 33, 34, 35, 36, 37, 38, dan 39oC; variasi suhu adsorpsi adalah 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, dan 15 oC; variasi waktu studi kinetika adalah setiap interval waktu 15 menit sampai didapat hasil konstan; dan variasi waktu laju penguapan adalah 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, dan 20 hari. Analisis gugus fungsi dilakukan menggunakan spektroskopi Fourier-transformed infrared (FTIR). Hasilnya, campuran minyak atsiri-koloid karbon aktif 2:1 v/v merupakan kondisi optimal yang dapat meningkatkan efisiensi kegunaan minyak atsiri hingga 500 % atau 5 kali lebih efisien. Proses adsorpsi berlangsung melalui kinetika orde dua semu (pseudo order dua), secara eksotermis dan bersifat fisisorpsi dengan nilai DH, DG, dan DS secara berurutan sebesar -1,805 kJ mol-1, 6,15´10-3 kJ mol-1, dan -3,63 kJ mol-1.

 

Fulltext View|Download
Keywords: Karbon aktif nano-mikro-partikel; Koloid karbon aktif; Minyak atsiri; Bunga lavender; Lavandula angustifolia
Funding: Universitas Diponegoro

Article Metrics:

  1. Dorcas, O. M., Usman, Z. F., Oludoyin, A. A., & Clement, O. A. (2017). Essential oil compositions of leaf, stem-bark, stem, root, flower, and fruit with seed of Blighia unijugata Baker (Sapindaceae). African Journal of Pharmacy and Pharmacology, 11(7):108–119.DOI: 10.5897/ajpp2016.4721
  2. Wesołowska, A., Jadczak, P., Kulpa, D., & Przewodowski, W. (2019). Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Essential Oils from AgNPs and AuNPs Elicited Lavandula angustifolia In Vitro Cultures. Molecules, 24(606):1–13. DOI: 10.3390/molecules24030606
  3. Soulimani, R., & Kumar Joshi, R. (2020). Toxicological aspects and pharmaco-therapeutic properties of linalool, a natural terpene derivative of essential oils: Literature studies. American Journal of Essential Oils and Natural Products, 8(4): 24–34. Retrieved from www.essencejournal.com
  4. López, V., Nielsen, B., Solas, M., Ramírez, M. J., & Jäger, A. K. (2017). Exploring pharmacological mechanisms of lavender (Lavandula angustifolia) essential oil on central nervous system targets. Frontiers in Pharmacology, 8: 1–8. DOI: 10.3389/fphar.2017.00280
  5. Sa’adah, A. A. P. (2020). Pengaruh Pelarut, Surfaktan, dan Gas Propelan terhadap Kualitas Aerosol Minyak Lavender Sebagai Pengharum Ruangan. Journal of Chemical Information and Modeling, 53(9)
  6. Singh, N., Yadav, M., Khanna, S., & Sahu,O. (2017). Sustainable fragrance cum antimicrobial finishing on cotton: Indigenous essential oil. Sustainable Chemistry and Pharmacy, 5: 22–29. DOI: 10.1016/j.scp.2017.01.003
  7. Ao, W., Fu, J., Mao, X., Kang, Q., Ran, C., Liu, Y., Dai, J. (2018). Microwave-assisted preparation of activated carbon from biomass: A review. Renewable and Sustainable Energy Reviews, 92: 958–979. DOI: 10.1016/j.rser.2018.04.051
  8. González, P., & García. (2018). Activated carbon from lignocellulosic precursors: A review of the synthesis methods, characterization techniques, and applications. Renewable and Sustainable Energy Reviews, 82: 1393–1414. DOI: 10.1016/j.rser.2017.04.117
  9. Berger, A. H., & Bhown, A. S. (2011). Comparing physisorption and chemisorption solid sorbents for use in separating CO2 from flue gas using temperature swing adsorption. Energy Procedia, 4: 562–567. DOI: 10.1016/j.egypro.2011.01.089
  10. Bhatnagar, A., Kumar, E., & Sillanpää, M. (2011). Fluoride removal from water by adsorption review. Chemical Engineering Journal, 171(3): 811–840. DOI: 10.1016/j.cej.2011.05.028
  11. Rosyadah, J. (2021).Pembuatan Campuran Minyak Atsiri Bunga Lavender (Lavandula Angustifolia)-Koloid Karbon Aktif Nanopartikel: Studi Tekanan Uap, Kinetika-Termodinamika dan Laju Desorpsi, Skripsi S1 Kimia, Departemen Kimia Fakultas Sains dan Matematika Universitas Diponegoro
  12. Wibawa, P. J., Fatimah, M., Latifah, N., Nurcahyo, R. Y., Norazizi, R. W., &Aini, R. N. (2024). Pembuatan Koloidal Karbon Aktif Nanopartikel Menggunakan Penstabil Minyak Kelapa Murni. Paten No. IDS000007572, 22 Pebruari 2024
  13. Ariani, T. (2017). Pengaruh Absorben terhadap Kualitas Fisik Minyak. Science and Physics Education Journal (SPEJ), 1(1): 1–6. DOI: 10.31539/spej.v1i1.74
  14. Sholeh, A., Sunyoto, & Al-Janan, D. H. (2012). Komposisi Gas Yang Terdapat Dalam Biogas. 1(1). Retrieved from https://journal.unnes.ac.id/sju/index.php/jmel/ article/view/1916/1720
  15. Gavahian, M., & Chu, Y. (2018). Ohmic accelerated steam distillation of essential oil from lavender in comparison with conventional steam distillation. Innovative Food Science and Emerging Technologies, https://doi.org/10.1016/j.ifset.2018.10.006
  16. ISO. (2002). International Standard Iso Oil of lavender (Lavandula angustifolia Mill.) Huile. 1987(3515)
  17. Baser, K. H. C., & Buchbauer, G. (2020). Handbook of Essential Oils: Science, Technology, and Applications (Third). Retrieved from https://lccn.loc.gov/2020014781
  18. Dong, G., Bai, X., Aimila, A., Aisa, H. A., & Maiwulanjiang, M. (2020). Study on lavender essential oil chemical compositions by GC-MS and improved pGC. Molecules, 25(14):1–8. DOI: 10.3390/molecules25143166
  19. Mistry, B. D. (2009). A Handbook of Spectroscopy Data Chemistry, 2009 Edition, Oxford Book Company, India, pages: 2832
  20. Parikh, V. M. (1974). Absorption Spectroscopy of Organic Molecules, Copyright 1974, Addison-Wesley Publishing Company, Philippines, pages: 5085
  21. Agatonovic-Kustrin, S., Ristivojevic, P., Gegechkori, V., Litvinova, T. M., & Morton, D. W. (2020). Essential oil quality and purity evaluation via ft-ir spectroscopy and pattern recognition techniques. Applied Sciences (Switzerland), 10(20):1–12. DOI: 10.3390/app10207294
  22. Sousa, S., Gaiolas, C., Costa, A. P., Baptista, C., & Amaral, M. E. (2016). Cold plasma treatment of cotton and viscose fabrics impregnated with essential oils of Lavandula angustifolia and Melaleuca alternifolia. Cellulose Chemistry and Technology, 50(5–6): 711–719
  23. Hoppen, M. I., Carvalho, K. Q., Ferreira, R. C., Passig, F. H., Pereira, I. C., Rizzo-Domingues, R. C. P., Bottini, R. C. R. (2019). Adsorption and desorption of acetylsalicylic acid onto activated carbon of babassu coconut mesocarp. Journal of Environmental Chemical Engineering, 7(1):102862. DOI: 10.1016/j.jece.2018.102862
  24. Ji, F., Li, C., Tang, B., Xu, J., Lu, G., & Liu, P. (2012). Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution. Chemical Engineering Journal, 209: 325–333. DOI: 10.1016/j.cej.2012.08.014
  25. Tseng, R., Wu, P., Wu, F., & Juang, R. (2014). A convenient method to determine kinetic parameters of adsorption processes by nonlinear regression of the pseudo-nth-order equation. Chemical Engineering Journal, 237:153161. DOI: 10.1016/j.cej.2013.10.013
  26. Foo, K. Y., & Hameed, B. H. (2012). A rapid regeneration of methylene blue dye-loaded activated carbons with microwave heating. Journal of Analytical and Applied Pyrolysis, 98: 123–128. DOI: 10.1016/j.jaap.2012.07.006
  27. Zhang, Y., Mancke, R. G., Sabelfeld, M., & Geißen, S. U. (2014). Adsorption of trichlorophenol on zeolite and adsorbent regeneration with ozone. Journal of Hazardous Materials, 271: 178–184. DOI: 10.1016/j.jhazmat.2014.02.020
  28. Svilović, S., Rušić, D., & Žanetić, R. (2008). Thermodynamics and adsorption isotherms of copper ions removal from solutions using synthetic zeolite X. Chemical and Biochemical Engineering Quarterly, 22(3): 299–305
  29. Rodriguez, E. S., Stefani, P. M., & Vazquez, A. (2007). Effects of fibers’ alkali treatment on the resin transfer molding processing and mechanical properties of Jute-Vinylester composites. Journal of Composite Materials, 1(14): 1729–1741. DOI: 10.1177/0021998306069889
  30. Cinke, M., Li, J., Bauschlicher, C. W., Ricca, A., & Meyyappan, M. (2003). CO2 adsorption in single-walled carbon nanotubes. Chemical Physics Letters, 376(5–6):761–766. DOI: 10.1016/S0009-2614(03)01124-2
  31. Żółtowska-Aksamitowska, S., Bartczak, P., Zembrzuska, J., & Jesionowski, T. (2018). Removal of hazardous non-steroidal anti-inflammatory drugs from aqueous solutions by biosorbent based on chitin and lignin. Science of the Total Environment, 612:1223-1233. DOI: 10.1016/j.scitotenv.2017.09.037
  32. Essandoh, M., Kunwar, B., Pittman, C. U., Mohan, D., & Mlsna, T. (2015). Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chemical Engineering Journal, 265: 219–227. DOI: 10.1016/j.cej.2014.12.006

Last update:

No citation recorded.

Last update:

No citation recorded.