skip to main content

Pemetaan Bibliometrik (2020-2024) Senyawa Bioaktif Makroalga Laut sebagai Agen Antioksidan Terhadap Toksisitas Lingkungan

*Puspa Hening orcid scopus  -  Biotechnology Study Program, Faculty of Science and Mathematics, Universitas Diponegoro, Jl. Prof. Jacob Rais, Tembalang Semarang, Jawa Tengah, Indonesia, 50275, Indonesia
Ifhan Dwinhoven orcid scopus  -  Fish Hatchery Technology Study Program, Department of Aquaculture, Pangkep State Polytechnic of Agriculture, Indonesia, Indonesia
Open Access Copyright 2025 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Makroalga laut adalah sumber metabolit sekunder dengan potensi sebagai antioksidan alami dan agen protektif terhadap toksisitas lingkungan. Studi ini bertujuan untuk memetakan tren dan fokus riset global mengenai senyawa bioaktif dari makroalga laut melalui pendekatan bibliometrik. Data publikasi dikumpulkan dari basis data Scopus untuk periode 2020–2024 menggunakan kombinasi kata kunci yang relevan dan dianalisis menggunakan perangkat lunak VOSviewer dan Publish or Perish. Sebanyak 81 artikel terpilih dianalisis untuk mengidentifikasi tren publikasi, distribusi negara dan institusi, jurnal yang paling berkontribusi, serta visualisasi kata kunci dan klaster tematik. Hasil menunjukkan peningkatan tren publikasi dalam lima tahun terakhir, dengan fokus utama pada aktivitas antioksidan, stres oksidatif, dan toksisitas lingkungan. Kata kunci seperti seaweed, antioxidant activity, dan oxidative stress merupakan istilah yang paling dominan. Senyawa seperti alginate, phloroglucinol, phlorotannins, asam lemak, serta fenolik diidentifikasi sebagai komponen bioaktif utama yang menunjukkan potensi tinggi dalam melindungi sel dari stres oksidatif akibat paparan polutan lingkungan. Selain itu, metode analisis seperti 2,2-diphenyl-1-picrylhydrazyl (DPPH) dan parameter enzimatik seperti superoxide dismutase (SOD) juga sering digunakan untuk mengevaluasi aktivitas biologis senyawa bioaktif makroalga laut. Pemetaan ini tidak hanya menegaskan relevansi makroalga dalam bidang kimia lingkungan, tetapi juga membuka peluang riset lanjutan seperti pengembangan sistem biosensor, aplikasi bioremediasi, serta eksplorasi senyawa baru dari makroalga lokal. Hasil studi ini diharapkan menjadi dasar ilmiah bagi pengembangan riset berkelanjutan berbasis sumber daya laut.

Fulltext View|Download
Keywords: antioksidan; bibliometrik; makroalga laut; senyawa bioaktif; toksisitas lingkungan.
Funding: Universitas Diponegoro

Article Metrics:

  1. Kalasariya HS, Maya-Ramírez CE, Cotas J, Pereira L. Biology of Marine Macroalgae. Vol. 2 Thalass. Cosmeceuticals, CRC Press; 2025
  2. Thiruchelvi. R Jayashree. P., Hemashree. T, Hemasudha T. S., Balashanmugam. P. Preliminary Phytochemical Analysis of the Crude extract of Marine Red and Brown Seaweeds. Res J Pharm Technol 2018;11:4407–10. https://doi.org/10.5958/0974-360X.2018.00806.5
  3. Chouh A, Nouadri T, Catarino MD, Silva AMS, Cardoso SM. Phlorotannins of the Brown Algae Sargassum vulgare from the Mediterranean Sea Coast. Antioxidants 2022;11. https://doi.org/10.3390/antiox11061055
  4. Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar Drugs 2020;18:301. https://doi.org/10.3390/md18060301
  5. Pal A, Kamthania MC, Kumar A. Bioactive Compounds and Properties of Seaweeds—A Review. Open Access Libr J 2014;1:1–17. https://doi.org/10.4236/oalib.1100752
  6. Sanjivkumar M, Selvan ST, Velramar B, Nagajothi K, Sophia SSM, Parameswari A. Biotherapeutic potential and properties of seaweeds. Whole-Cell Biocatal. -Gener. Technol. Green Synth. Pharm. Chem. Biofuels, 2024, p. 199–220
  7. Murphy C, Hotchkiss S, Worthington J, McKeown SR. The potential of seaweed as a source of drugs for use in cancer chemotherapy. J Appl Phycol 2014;26:2211–64. https://doi.org/10.1007/s10811-014-0245-2
  8. Poojary MM, Barba FJ, Aliakbarian B, Donsì F, Pataro G, Dias DA, Juliano P. Innovative alternative technologies to extract carotenoids from microalgae and seaweeds. Mar Drugs 2016;14. https://doi.org/10.3390/md14110214
  9. Polo LK, and Chow F. Variation of antioxidant capacity and antiviral activity of the brown seaweed Sargassum filipendula (Fucales, Ochrophyta) under UV radiation treatments. Appl Phycol 2022;3:260–73. https://doi.org/10.1080/26388081.2022.2030653
  10. Mohan K, Rajan DK, Ganesan AR, Munisamy S. Algal-Derived (By) Products as an Immunostimulant in the Aquaculture Industry. Algal Biotechnol., CRC Press; 2024
  11. Cabrera J, Marcoval MaA, Díaz-Jaramillo M, Gonzalez M. Single and Combined Effects of Cypermethrin and UVR Pre-Exposure in the Microalgae Phaeodactylum Tricornutum. Arch Environ Contam Toxicol 2021;81:507–16. https://doi.org/10.1007/s00244-021-00889-1
  12. Begum R, Howlader S, Mamun-Or-Rashid ANM, Rafiquzzaman SM, Ashraf GM, Albadrani GM, Sayed AA, Peluso I, Abdel-Daim MM, Uddin MS. Antioxidant and Signal-Modulating Effects of Brown Seaweed-Derived Compounds against Oxidative Stress-Associated Pathology. Oxid Med Cell Longev 2021;2021. https://doi.org/10.1155/2021/9974890
  13. El-Bilawy EH, Al-Mansori A-NA, Alotibi FO, Al-Askar AA, Arishi AA, Teiba II, Sabry AE-N, Elsharkawy MM, Heflish AA, Behiry SI, Abdelkhalek A. Antiviral and Antifungal of Ulva fasciata Extract: HPLC Analysis of Polyphenolic Compounds. Sustainability 2022;14:12799. https://doi.org/10.3390/su141912799
  14. [Matin M, Koszarska M, Atanasov AG, Król-Szmajda K, Jóźwik A, Stelmasiak A, Hejna M. Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects. Molecules 2024;29:4695. https://doi.org/10.3390/molecules29194695
  15. Walimuni SWS, Niroshika KKH, Senaweera YT, Molagoda IMN. Seaweed metabolites as a novel source of drugs to treat inflammatory diseases. Role Seaweeds Blue Bioeconomy, 2024, p. 52–79. https://doi.org/10.2174/9789815223644124010006
  16. Sharma M., Sujata S., Bansal D. and Kaushik P. Mini Review on the Potential of Algal Biosensors in Wastewater Monitoring. Nanosci Nanotechnol-Asia 2023;13:24–7. https://doi.org/10.2174/2210681213666230517123150
  17. Areco MM, Salomone VN, Afonso M dos S. Ulva lactuca: A bioindicator for anthropogenic contamination and its environmental remediation capacity. Mar Environ Res 2021;171:105468. https://doi.org/10.1016/j.marenvres.2021.105468
  18. Liu Z, Sun X. A Critical Review of the Abilities, Determinants, and Possible Molecular Mechanisms of Seaweed Polysaccharides Antioxidants. Int J Mol Sci 2020;21:7774. https://doi.org/10.3390/ijms21207774
  19. Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res 2021;133:285–96. https://doi.org/10.1016/j.jbusres.2021.04.070
  20. Yumnam G, Yumnam G, Alam W. Quantifying the Global Research Effort on Bioactive Compounds: A Scientometric Analysis (1989-2023): QUANTIFYING THE GLOBAL RESEARCH EFFORT ON BIOACTIVE COMPOUNDS. J Sci Ind Res JSIR 2024;83:1125–38. https://doi.org/10.56042/jsir.v83i10.9135
  21. Segaran TC, Azra MN, Mohd Noor MI, Danish-Daniel M, Burlakovs J, Lananan F, Xu J, Kari ZA, Wei LS. Knowledge mapping analysis of the global seaweed research using CiteSpace. Heliyon 2024;10:e28418. https://doi.org/10.1016/j.heliyon.2024.e28418
  22. Arruda H, Silva ER, Lessa M, Proença D, Bartholo R. VOSviewer and Bibliometrix. J Med Libr Assoc JMLA n.d.;110:392–5. https://doi.org/10.5195/jmla.2022.1434
  23. Harzing - A-W. Publish or Perish. HarzingCom 2016. https://harzing.com/resources/publish-or-perish (accessed April 26, 2025)
  24. Chakraborty K. Marine Macroalgae as a Treasure House of Bioactive Compounds and Nutraceuticals, 2023. https://doi.org/10.1007/978-3-031-28780-0_30
  25. Kammler S, Malvis Romero A, Burkhardt C, Baruth L, Antranikian G, Liese A, Kaltschmitt M. Macroalgae valorization for the production of polymers, chemicals, and energy. Biomass Bioenergy 2024;183:107105. https://doi.org/10.1016/j.biombioe.2024.107105
  26. García-Poza S, Pacheco D, Cotas J, Marques JC, Pereira L, Gonçalves AMM. Marine macroalgae as a feasible and complete resource to address and promote Sustainable Development Goals (SDGs). Integr Environ Assess Manag 2022;18:1148–61. https://doi.org/10.1002/ieam.4598
  27. Priyanka KR, Rajaram R, Sivakumar SR. A critical review on pharmacological properties of marine macroalgae. Biomass Convers Biorefinery 2022. https://doi.org/10.1007/s13399-022-03134-4
  28. Vijayalakshmi K, Latha S, Rose MH, Sudha PN. Industrial applications of alginate. Ind. Appl. Mar. Biopolym., 2017, p. 545–76. https://doi.org/10.4324/9781315313535
  29. Žatko D, Vašková J, Perjési P, Haus M, Vaško L. Pro-oxidative and antioxidant effects of salicylates. Chem Pap 2020;74:3161–8. https://doi.org/10.1007/s11696-020-01152-y
  30. Park C, Cha H-J, Hwangbo H, Ji SY, Kim DH, Kim MY, Bang E, Hong SH, Kim SO, Jeong S-J, Lee H, Moon S-K, Shim J-H, Kim G-Y, Cho S, Choi YH. Phloroglucinol Inhibits Oxidative-Stress-Induced Cytotoxicity in C2C12 Murine Myoblasts through Nrf-2-Mediated Activation of HO-1. Int J Mol Sci 2023;24:4637. https://doi.org/10.3390/ijms24054637
  31. Woo H, Kim M-K, Park S, Han S-H, Shin H-C, Kim B, Oh S-H, Suh M-W, Lee J-H, Park M-K. Effect of Phlorofucofuroeckol A and Dieckol Extracted from Ecklonia cava on Noise-induced Hearing Loss in a Mouse Model. Mar Drugs 2021;19:443. https://doi.org/10.3390/md19080443
  32. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2025 update. Nucleic Acids Res 2025;53:D1516–25. https://doi.org/10.1093/nar/gkae1059
  33. Mansoor S, Ali A, Kour N, Bornhorst J, AlHarbi K, Rinklebe J, Abd El Moneim D, Ahmad P, Chung YS. Heavy Metal Induced Oxidative Stress Mitigation and ROS Scavenging in Plants. Plants 2023;12:3003. https://doi.org/10.3390/plants12163003
  34. Koyama H, Kamogashira T, Yamasoba T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants 2024;13:76. https://doi.org/10.3390/antiox13010076
  35. Carpena M, Pereira CSGP, Silva A, Barciela P, Jorge AOS, Perez-Vazquez A, Pereira AG, Barreira JCM, Oliveira MBPP, Prieto MA. Metabolite Profiling of Macroalgae: Biosynthesis and Beneficial Biological Properties of Active Compounds. Mar Drugs 2024;22:478. https://doi.org/10.3390/md22100478
  36. Negreanu-Pirjol B-S, Negreanu-Pirjol T, Popoviciu DR, Anton R-E, Prelipcean A-M. Marine Bioactive Compounds Derived from Macroalgae as New Potential Players in Drug Delivery Systems: A Review. Pharmaceutics 2022;14:1781. https://doi.org/10.3390/pharmaceutics14091781
  37. Li Y, Ma Z. Antioxidants and Reactive Oxygen Species (ROS) Scavenging Enzymes, 2020. https://doi.org/10.1007/978-981-15-5354-7_10
  38. Matin M, Koszarska M, Atanasov AG, Król-Szmajda K, Jóźwik A, Stelmasiak A, Hejna M. Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects. Molecules 2024;29:4695. https://doi.org/10.3390/molecules29194695
  39. Meinita MDN, Harwanto D, Choi J-S. Seaweed Exhibits Therapeutic Properties against Chronic Diseases: An Overview. Appl Sci 2022;12:2638. https://doi.org/10.3390/app12052638

Last update:

No citation recorded.

Last update:

No citation recorded.