skip to main content

Preparasi Adsorben Logam Berat Berbasis Senyawa Kalsium Fosfat: Studi Transformasi Struktur Kalsium Fosfat Amorf Menjadi β-Trikalsium Fosfat

*Tri Windarti  -  Department of Chemistry Universitas Diponegoro, Indonesia
Open Access Copyright 2025 Greensphere: Journal of Environmental Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Beta-trikalsium fosfat (β-TCP, β-Ca3(PO4)2) merupakan salah satu senyawa kalsium fosfat yang dapat digunakan sebagai adsorben logam berat. Pembentukan struktur β-TCP sangat dipengaruhi oleh temperatur. Pada penelitian ini β-TCP disintesis dengan metode sol-gel menggunakan prekursor kalsium dan fosfat berupa Ca(NO3)2. 4H2O dan KH2PO4 pada rasio Ca/P =1,2. Studi transformasi kalsium fosfat amorf menjadi kristal β-TCP dilakukan dengan proses firing temperatur 800 °C selama 30 menit. Analisis dengan FTIR menunjukkan adanya pergeseran puncak vibrasi gugus fosfat yang menandakan terjadinya penataan struktur menjadi lebih teratur. Difraktogram XRD membuktikan bahwa senyawa kalsium fosfat amorf berubah menjadi kristal β-TCP dengan kristalinitas tinggi. Ukuran kristal β-TCP yang dihasilkan lebih kecil dari ukuran kristal β-TCP pada JCPDS card no 090169. Proses firing juga menyebabkan berkurangnya jumlah H2O yang terjebak dan lepasnya gugus CO32- sehingga dihasilkan produk dengan kemurnian tinggi. Beta-TCP hasil sintesis dapat direkomendasikan untuk diaplikasikan sebagai adsorben logam berat.
Fulltext View|Download
Keywords: kalsium fosfat amorf, β-trikalsium fosfat, sol-gel, adsorben
Funding: Universitas Diponegoro

Article Metrics:

  1. Amenaghawon, Andrew N., Chinedu L. Anyalewechi, Handoko Darmokoesoemo, and Heri Septya Kusuma. 2022. “Hydroxyapatite-Based Adsorbents: Applications in Sequestering Heavy Metals and Dyes.” Journal of Environmental Management 302 (PA): 113989. https://doi.org/10.1016/j.jenvman.2021.113989
  2. Bae, Jiyoung, Yumika Ida, Kazumitsu Sekine, Fumiaki Kawano, and Kenichi Hamada. 2015. “Effects of High-Energy Ball-Milling on Injectability and Strength of β-Tricalcium-Phosphate Cement.” Journal of the Mechanical Behavior of Biomedical Materials 47: 77–86. https://doi.org/10.1016/j.jmbbm.2015.03.005
  3. Bensalah, Hiba, Saad Alami Younssi, Mohamed Ouammou, Aleksander Gurlo, and Maged F. Bekheet. 2020. “Azo Dye Adsorption on an Industrial Waste-Transformed Hydroxyapatite Adsorbent: Kinetics, Isotherms, Mechanism and Regeneration Studies.” Journal of Environmental Chemical Engineering 8 (3): 103807. https://doi.org/10.1016/j.jece.2020.103807
  4. Borodajenko, L. B-C;, and Natalija. 2012. “Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy.” In Infrared Spectroscopy - Materials Science, Engineering and Technology, edited by Theophanides Theophile, 123–48. Croatia: Intech
  5. Boujaady, H. El, A. El Rhilassi, M. Bennani-Ziatni, R. El Hamri, A. Taitai, and J. L. Lacout. 2011. “Removal of a Textile Dye by Adsorption on Synthetic Calcium Phosphates.” Desalination 275 (1–3): 10–16. https://doi.org/10.1016/j.desal.2011.03.036
  6. Carrodeguas, R G, and S De Aza. 2011. “α-Tricalcium Phosphate: Synthesis, Properties and Biomedical Applications.” Acta Biomaterialia 7: 3536–46. https://doi.org/10.1016/j.actbio.2011.06.019
  7. Champion, E. 2013. “Sintering of Calcium Phosphate Bioceramics.” Acta Biomaterialia 9 (4): 5855–75. https://doi.org/10.1016/j.actbio.2012.11.029
  8. Degli Esposti, Lorenzo, Kai Zheng, Andreana Piancastelli, Andrei C. Ionescu, Alessio Adamiano, Aldo R. Boccaccini, and Michele Iafisco. 2024. “Composite Materials of Amorphous Calcium Phosphate and Bioactive Glass Nanoparticles for Preventive Dentistry.” Ceramics International 50 (1): 593–602. https://doi.org/10.1016/j.ceramint.2023.10.137
  9. Dorozhkin, S.V. 2017. “Calcium Phosphate-Based Bioceramics and Its Clinical Application.” In Clinical Applications of Biomaterials, edited by Gurbinder Kaur, 123–226. Switzerland: Springer Nature. https://doi.org/10.1001/jama.1983.03330320048031
  10. Galea, Laetitia, Dmitriy Alexeev, Marc Bohner, Nicola Doebelin, Andr?? R. Studart, Christos G. Aneziris, and Thomas Graule. 2015. “Textured and Hierarchically Structured Calcium Phosphate Ceramic Blocks through Hydrothermal Treatment.” Biomaterials 67: 93–103. https://doi.org/10.1016/j.biomaterials.2015.07.026
  11. Kaur, Kulwinder, K. J. Singh, Vikas Anand, Nasarul Islam, Gaurav Bhatia, Namarta Kalia, and Jatinder Singh. 2017. “Lanthanide (=Ce, Pr, Nd and Tb) Ions Substitution at Calcium Sites of Hydroxyl Apatite Nanoparticles as Fluorescent Bio Probes: Experimental and Density Functional Theory Study.” Ceramics International 43 (13): 10097–108. https://doi.org/10.1016/j.ceramint.2017.05.029
  12. Khan, Mohammad Mujahid Ali, and Rafiuddin. 2012. “Synthesis, Electrochemical Characterization, Antibacterial Study and Evaluation of Fixed Charge Density of Polystyrene Based Calcium-Strontium Phosphate Composite Membrane.” Desalination 284: 200–206. https://doi.org/10.1016/j.desal.2011.08.059
  13. Kumar, N. Ponnusamy, Sandeep Kumar Mishra, and Sanjeevi Kannan. 2017. “Structural Perceptions and Mechanical Evaluation of β-Ca3(PO4)2/c-CeO2 Composites with Preferential Occupancy of Ce3+ and Ce4+.” Inorganic Chemistry 56 (6): 3600–3611. https://doi.org/10.1021/acs.inorgchem.7b00045
  14. Miao, X, W Lim, X Huang, and Y Chen. 2005. “Preparation and Characterization of Interpenetrating Phased TCP/HA/PLGA Composites.” Materials Letters 59: 4000–4005. https://doi.org/10.1016/j.matlet.2005.07.062
  15. Rodrigues, Leonardo Ribeiro, Carmen Gilda, Barroso Tavares, Fernando Jorge, and Mendes Monteiro. 2011. “Synthesis of HA and Beta-TCP Using Sol-Gel Process and Analysis with FTIR.” In Proceedings of COBEM 2011, 1–5
  16. Ruiz-Aguilar, Criseida, Luz Eugenia Alcántara-Quintana, Ena Athenea Aguilar-Reyes, and U. Olivares-Pinto. 2020. “Fabrication, Characterization, and in Vitro Evaluation of β-TCP/ZrO2-Phosphate-Based Bioactive Glass Scaffolds for Bone Repair.” Boletin de La Sociedad Espanola de Ceramica y Vidrio. https://doi.org/10.1016/j.bsecv.2020.09.004
  17. Salama, Ahmed. 2019. “Cellulose/Calcium Phosphate Hybrids: New Materials for Biomedical and Environmental Applications.” International Journal of Biological Macromolecules 127: 606–17. https://doi.org/10.1016/j.ijbiomac.2019.01.130
  18. Szilágyi, Botond, Norbert Muntean, Réka Barabás, Oana Ponta, and Béla G. Lakatos. 2015. “Reaction Precipitation of Amorphous Calcium Phosphate: Population Balance Modelling and Kinetics.” Chemical Engineering Research and Design 93: 278–86. https://doi.org/10.1016/j.cherd.2014.04.003
  19. Wan Ngah, W. S., L. C. Teong, and M. A.K.M. Hanafiah. 2011. “Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites: A Review.” Carbohydrate Polymers 83 (4): 1446–56. https://doi.org/10.1016/j.carbpol.2010.11.004
  20. Windarti, Tri, Adi Darmawan, and Ana Marliana. 2019. “Synthesis of β-TCP by Sol-Gel Method: Variation of Ca/P Molar Ratio.” IOP Conference Series: Materials Science and Engineering 509 (May): 012147. https://doi.org/10.1088/1757-899X/509/1/012147
  21. Windarti, Tri, Limpat Nulandaya, Widjijono Widjijono, and Nuryono Nuryono. 2023. “Synthesis and Characterization of Biphasic Calcium Phosphate Substituted Cerium as a Potential Osteoporotic Bone Filler.” Periodica Polytechnica Chemical Engineering 67 (2): 242–55. https://doi.org/10.3311/PPch.21111
  22. Zhu, Genxing, Ruibo Zhao, Yaling Li, and Ruikang Tang. 2016. “Multifunctional Gd, Ce, Tb Co-Doped β-Tricalcium Phosphate Porous Nanospheres for Sustained Drug Release and Bioimaging.” Journal of Materials Chemistry B 4 (22): 3903–10. https://doi.org/10.1039/C5TB02767E

Last update:

No citation recorded.

Last update:

No citation recorded.