skip to main content

HUBUNGAN KONSTANTA ATENUASI DENGAN KONSTITUEN AIR PADA PERAIRAN PELABUHAN KARIMUNJAWA

1UNIVERSITAS GADJAH MADA, Indonesia

2Pusat Pemanfaatan Penginderaan Jauh, LAPAN, Indonesia

Received: 15 May 2019; Published: 7 Jul 2019.

Citation Format:
Abstract
Satellite-derived bathymetry (SDB) is one of the techniques in remote sensing for extraction of ocean depth by utilizing optical imagery. Spectral data from the water column is needed for SDB process. One of SDB method is an analytical method requiring field spectral data, water attenuation, and water constituents for depth estimation processes. Spectral data and attenuation were acquired by TriOS Ramses spectrometer. Water constituents are taken from filtered water samples to be tested at the laboratory. The water constituents tested were chlorophyll, CDOM, TSS, and TOM. The depth value of bathymetry extraction is strongly influenced by light penetration behavior. This is influenced by the condition of water constituents. Water constituents affect the attenuation of water. The study gives results from 4 stations of attenuation measurement having a positive correlation with chlorophyll constituents. Chlorophyll has a positive correlation with other constituents (TOM, CDOM, and TSS). From the value of water attenuation, the water classification around Karimunjawa Port are clear water of type III and 1 which have a value of (PAR) is 0.111 m-1.
Fulltext View|Download
Funding: Gathot Winarso ; Kuncoro Teguh Kurniawan, PUSFATJA LAPAN

Article Metrics:

  1. Asuero, A. G., Sayago, A. dan Gonz, A. G. (2006) The Correlation Coefficient : An Overview. The University of Seville. doi: 10.1080/10408340500526766
  2. Devlin, M. J. et al. (2009) “Estuarine , Coastal and Shelf Science Estimating the diffuse attenuation coefficient from optically active constituents in UK marine waters,” Estuarine, Coastal and Shelf Science, 82, hal. 73–83. doi: 10.1016/j.ecss.2008.12.015
  3. Gao, J. (2009) “Bathymetric mapping by means of remote sensing: Methods, accuracy and limitations,” Progress in Physical Geography, 33(1), hal. 103–116
  4. Gege, P. dan Pinnel, N. (2011) “Sources of Variance of Downwelling Irradiance in Water,” Applied Optics
  5. Green, E. P. et al. (2000) Remote Sensing Handbook for Tropical Coastal Management. Diedit oleh A. J. Edwards. Paris: UNESCO. doi: 10.1109/6.367967
  6. Han, L. dan Jordan, K. J. (2005) “Estimating and mapping chlorophyll- a concentration in Pensacola Bay , Florida using Landsat ETM + data,” International Journal of Remote Sensing, 26(23), hal. 5245–5254. doi: 10.1080/01431160500219182
  7. Jaud, T. et al. (2012) “Relationship between Chlorophyll a Concentration , Light Attenuation and Relationship between Chlorophyll a Concentration , Light Attenuation and Diving Depth of the Southern Elephant Seal Mirounga leonina,” PLOS ONE, (February 2014). doi: 10.1371/journal.pone.0047444
  8. Jerlov, N. G. (1976) Marine Optics. Copenhagen: Elsevier Inc
  9. Kowalczuk, P., Stedmon, C. A. dan Markager, S. (2006) “Modeling absorption by CDOM in the Baltic Sea from season , salinity and chlorophyll,” Marine Chemistry, 101, hal. 1–11. doi: 10.1016/j.marchem.2005.12.005
  10. Lafon, V. et al. (2002) “SPOT shallow water bathymetry of a moderately turbid tidal inlet based on field measurements,” Remote Sensing of Environment, 81(1), hal. 136–148. doi: 10.1093/aje/kwx046
  11. Lee, Z., Du, K. dan Arnone, R. (2005) “A model for the diffuse attenuation coefficient of downwelling irradiance,” Journal of Geophysical Research, 110, hal. 1–10. doi: 10.1029/2004JC002275
  12. Lee, Z. P. et al. (2005) “Bathymetry of shallow coastal regions derived from space-borne hyperspectral sensor,” Proceedings of MTS/IEEE OCEANS, 2005, 2005, hal. 1–11. doi: 10.1109/OCEANS.2005.1640084
  13. Lyzenga, D. R. (1978) “Passive remote sensing techniques for mapping water depth and bottom features,” Applied Optics, 17(3), hal. 379
  14. Martin, J. et al. (2012) “Atmospheric correction models for high resolution WorldView-2 multispectral imagery: a case study in Canary Islands, Spain.” doi: 10.1117/12.974564
  15. McKinna, L. I. W. et al. (2015) “A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization,” Journal of Geophysical Research: Oceans, hal. 1741–1770. doi: 10.1002/2014JC010224
  16. Meliani, F. et al. (2018) “Pengukuran Koefisien Atenuasi Dan Hubungannya Dengan Kualitas Air Di Perairan Kelurahan Pulau Panggang,” Jurnal Teknologi Perikanan dan Kelautan, 9(1), hal. 73–81
  17. Mobley, C. D. (1994) “Optical Properties of Water,” Light and waters: Radiative Transfer in Natural Waters, hal. 60–144. doi: https://doi.org/10.1016/B978-012370626-3.00069-7
  18. Nuzapril, M. dan Panjaitan, J. P. (2017) “Hubungan Antara Konsentrasi Klorofil-A Dengan Tingkat Produktivitas Primmer Menggunakan Citra Satelit Landsat-8,” Jurnal Teknologi Perikanan dan Kelautan, (July). doi: 10.24319/jtpk.8.105-114
  19. Pacifici, F. (2016) “Validation of the DigitalGlobe surface reflectance product,” International Geoscience and Remote Sensing Symposium (IGARSS), 2016–November, hal. 1973–1975. doi: 10.1109/IGARSS.2016.7729508
  20. Parwati, E. et al. (2014) “The relationship between total suspended solid ( TSS ) and coral reef growth ( case study of Derawan Island , Berau Regency , East Kalimantan ),” International Journal of Remote Sensing and Earth Sciences, (April). doi: 10.30536/j.ijreses.2013.v10.a1849
  21. Prasetyo, B. A. et al. (2017) “In-Situ Measurement Of Diffuse Attenuation Coefficient And Its Relationship With Water Constituent And Depth Estimation Of Shallow Waters By Remote Sensing Technique,” International Journal of Remote Sensing and Earth Sciences (IJReSES), 14(1), hal. 47–60
  22. Purkis, S. J. (2018) “Remote Sensing Coral Reefs,” Reference Module in Earth Systems and Environmental Sciences. 3 ed. Elsevier Inc., hal. 1–8. doi: 10.1016/B978-0-12-409548-9.10813-9
  23. Saulquin, B. et al. (2013) “Estimation of the diffuse attenuation coefficient KdPAR using MERIS and application to seabed habitat mapping,” Remote Sensing of Environment. Elsevier Inc., 128, hal. 224–233. doi: 10.1016/j.rse.2012.10.002
  24. Simon, A. dan Shanmugam, P. (2013) “A new model for the vertical spectral diffuse attenuation coefficient of downwelling irradiance in turbid coastal waters : validation with in situ measurements,” Optical Society of America, 21(24), hal. 543–545. doi: 10.1364/OE.21.030082
  25. Smith, M. J. (2015) A comparison of DG AComp , FLAASH and QUAC atmospheric compensation algorithms using WorldView-2 imagery. University of Colorado
  26. UKHO (2015) Satellite Derived Bathymetry. IHO, 11th CSPCWG - 1st NCWG Meeting, Rostock, Germany

Last update:

No citation recorded.

Last update:

No citation recorded.