skip to main content

Karakteristik Perkecambahan Biji Lamtoro [Leucaena leucocephala (Lam.)de Wit] pada Perlakuan Skarifikasi serta Perubahan Nilai Gizi Setelah Perkecambahan

Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora 1 Bulaksumur, Yogyakarta 55281, Indonesia, Indonesia

Open Access Copyright 2022 Buletin Anatomi dan Fisiologi

Citation Format:
Abstract

Lamtoro [Leucaena leucocephala (Lam.) de Wit] merupakan komoditas pangan lokal Indonesia yang berpotensi sebagai pangan sumber protein, namun biji lamtoro tua kurang diminati. Proses pengolahan yang dapat diaplikasikan pada biji lamtoro tua adalah perkecambahan, yang kemudian hasilnya biasa diolah menjadi berbagai makanan khas Indonesia. Lamtoro tua memiliki kulit biji yang tebal dan keras, sehingga perlu proses skarifikasi untuk memudahkan perkecambahan. Tujuan penelitian ini adalah untuk mengetahui karakteristik perkecambahan biji lamtoro pada perlakuan skarifikasi dengan variasi suhu dan durasi perendaman serta perubahan nilai gizi biji lamtoro setelah perkecambahan. Skarifikasi dilakukan dengan cara perendaman dalam air dengan suhu 50, 70, dan 90°C selama 5, 10, dan 15 menit kemudian dianalisis karakteristik perkecambahan berupa persen imbibisi, persen perkecambahan, dan kecepatan berkecambahnya. Kecambah dengan karakteristik perkecambahan terbaik dianalisis perubahan kandungan gizinya. Data diambil dengan pola Rancangan Acak Lengkap (RAL) pada tingkat kepercayaan 95%. Hasil penelitian menunjukkan bahwa pola imbibisi yang terjadi pada biji lamtoro bersifat trifase. Perlakuan skarifikasi dengan air pada suhu 70°C selama 15 menit menghasilkan persen imbibisi, persen perkecambahan, dan kecepatan berkecambah tertinggi, sehingga uji perubahan kandungan gizi dilakukan pada perkecambahan dengan skarifikasi pada suhu 70°C selama 15 menit. Setelah perkecambahan selama 72 jam terjadi peningkatan kadar air dan kadar protein, serta penurunan kadar lemak, abu, dan karbohidrat.

 

Lamtoro [Leucaena leucocephala (Lam.) de Wit] is a local Indonesian food commodity that can be a food source of protein, but old lamtoro seeds are less attractive. The processing process that can be applied to old lamtoro seeds is germination, which is then usually processed into various Indonesian specialities. Old lamtoro has a thick and hard seed coat, so it needs a scarification process to facilitate germination. The purpose of this study was to determine the germination characteristics of lamtoro seeds in scarification treatment with variations in temperature and soaking duration, as well as changes in the nutritional value of lamtoro seeds after germination. Scarification was carried out by immersion in water at a temperature of 50, 70, and 90°C for 5, 10, and 15 minutes and then analyzed for germination characteristics in the form of percent imbibition, germination percentage, and germination speed. Sprouts with the best germination characteristics were analyzed for changes in nutritional content. Data were taken using a completely randomized design (CRD) pattern at a 95% confidence level. The results showed that the imbibition pattern that occurred in lamtoro seeds was triphase. Scarification treatment with water at 70°C for 15 minutes resulted in the highest percent imbibition, germination percentage, and germination speed, so the test for changes in nutrient content was carried out on germination by scarification at a temperature of 70°C for 15 minutes. After germination for 72 hours, there was an increase in water content and protein content and a decrease in fat, ash, and carbohydrate content.

Fulltext View|Download
Keywords: biji lamtoro; skarifikasi; suhu; durasi
Funding: Kementerian Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia skema Penelitian Terapan Unggulan Perguruan Tinggi (PTUPT) 2020 under contract 2897/UN.1.DITLIT/DIT-LIT/PT/2020

Article Metrics:

  1. Aguilar, J., Miano, A. C., Obregón, J., Soriano-Colchado, J., and Barraza-Jáuregui, G. 2019. Malting process as an alternative to obtain high nutritional quality quinoa flour. Journal of Cereal Science. 90:102858
  2. Alabi, M.H., Olamide, A.L.M.., and Ekojonwa, O. K. S. 2009. Proximate analysis of Leucaena Leucocephala (Lam.) de Wit, Parkia Biglobosa (Jacq.) Benth and Prosopis Africana (Guill & Perr.) Taub. Journal of Chemical Education, 86(2): 35-38
  3. Anggrahini, S. 2007. Pengaruh Lama Pengecambahan terhadap Kandungan -Tokoferol dan Senyawa Proksimat Kecambah Kacang Hijau (Phaseolus radiatus L.). Jurnal Agritech. 27(04):152–157
  4. Bewley, J.D. and M. Black. 1994. Seeds: Physiology of Development and Germination. Springer Science+Business Media, New York
  5. Bichoff, R. S., de Albuquerque, A. N., Mariano, D. de C., Okumura, R. S., Oliveira, R. S., Neto, C. F. de O., Viégas, I. de J. M., Pedroso, A. J. S., Alves, J. D. N., Sodré, D. C., and Valente, G. F. 2018. Overcoming seed dormancy and evaluation of viability in Leucaena leucocephala. Australian Journal of Crop Science. 12(1):168–172
  6. Chinma, C. E., Abu, J. O., Asikwe, B. N., Sunday, T., and Adebo, O. A. 2021. Effect of germination on the physicochemical, nutritional, functional, thermal properties and in vitro digestibility of Bambara groundnut flours. Lwt. 140: 110749
  7. Damalas, C. A., Koutroubas, S. D., and Fotiadis, S. 2019. Hydro-priming effects on seed germination and field performance of faba bean in spring sowing. Agriculture (Switzerland). 9(9):1-11
  8. Darmanti, S., Santosa, S., Dewi, K., and Nugroho, L. H. 2015. Allelopathic effect of Cyperus rotundus L. on seed germination and initial growth of Glycine max L. cv. Grobogan. Bioma : Berkala Ilmiah Biologi. 17(2): 61-67
  9. Fadilah., Rochmadi., S. Syamsiah. dan Haryadi. 2015. Hydrolysis of starch in porang flour using alpha amylase. Journal of Engineering Science and Technology. 6(1):1-8
  10. Foschi, M. L., Juan, M., Pascual, B., and Pascual-Seva, N. 2020. Water uptake and germination of caper (Capparis spinosa L.) seeds. Agronomy. 10(6)
  11. Isnaeni, E. dan N.A. Habibah. 2014. Efektivitas skarifikasi dan suhu perendaman terhadap perkecambahan biji kepel [Stelechocarpus burahol (Blume) Hook. F & Thompson] secara in vitro dan ex vitro. Jurnal Mipa. 37(2):105-114
  12. Juhanda, Nurmiaty, Y., and Ermawati. 2013. Pengaruh skarifikasi pada pola imbibisi dan perkecambahan benih saga manis (Abruss precator L.). J. Agrotek Tropika. 1(1): 45–49
  13. Kaczmarska, K. T., Chandra-Hioe, M. V., Zabaras, D., Frank, D., and Arcot, J. 2017. Effect of germination and fermentation on carbohydrate composition of australian sweet lupin and soybean seeds and flours. Journal of Agricultural and Food Chemistry. 65(46): 10064–10073
  14. Kalita, D., Sarma, B., and Srivastava, B. 2017. Influence of germination conditions on malting potential of low and normal amylose paddy and changes in enzymatic activity and physico chemical properties. Food Chemistry. 220: 67–75
  15. Kestring, D., J. Klein., L.C.C.R. de Menezes., and M.N. Rossi. 2009. Imbibition phases and germination response of Mimosa bimucronata (Fabaceae: Mimosoideae) to water submersion. Aquatic Botany. 91(2):105–109
  16. Kimura, E., and Islam, M. A. 2012. Seed scarification methods and their use in forage legumes. Research Journal of Seed Science. 5(2): 38–50
  17. Liadi, V. C., Wisaniyasa, N. W., and Puspawati, N. N. 2019. Studi sifat fungsional dan kimia tepung kecambah kacang koro benguk (Mucuna pruriens L.). Jurnal Ilmu Dan Teknologi Pangan (ITEPA). 8(2): 131-139
  18. Mahmud, M., Hermana., N.A. Zulfianto., R. Rozanna., Apriyantono., I. Ngadiarti., B. Hartati., Bernadus., dan Tinexcelly. 2009. Tabel Komposisi Pangan Indonesia (TKPI). PT Elex Media Komputindo: Jakarta
  19. Moiwend, K. Y., Aiyen., and Madauna, I. S. 2015. Uji viabilitas benih ketimun ( Cucumis sativus L ) hasil perlakuan penyerbukan berbagai serangga. e-J. Agrotekbis. 3(2):178–186
  20. Moongngarm, A., and Saetung, N. 2010. Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chemistry. 122(3): 782–788
  21. Obiazi, C. C. 2015. Hot water enhanced germination of Leucaena leucocephala seeds in light and dark conditions. Current Research in Agricultural Sciences. 2(2): 67–72
  22. Ogbonna, A. C., Abuajah, C. I., and Udofia, U. S. 2012. Effect of malting conditions on the nutritional and anti-nutritional factors of sorghum grist and anti-nutritional factors of sorghum grist. AUDJG-Food Technology. 36(2):64-72
  23. Onyango, C.A., Ochanda, S.O., Mwasaru, M.A., Ochieng, J.K., Mathooko, F.M. and Kinyuru, J.N. 2013. Effects of malting and fermentation on anti-nutrient reduction and protein digestibility of red sorghum, white sorghum and pearl millet. Journal of Food Research. 2(1):41-49
  24. Padmashree, A., Negi, N., Handu, S., Khan, M. A., Semwal, A. D., and Sharma, G. K. 2019. Effect of germination on nutritional, antinutritional and rheological characteristics of chenopodium quinoa. Defence Life Science Journal. 4(1): 55–60
  25. Rosental, L., Nonogaki, H., and Fait, A. 2014. Activation and regulation of primary metabolism during seed germination. Seed Science Research, 24(1): 1–15
  26. Rusdy, M. 2016. Improvement of seed germination and early seedling growth of Leucaena leucocephala by cold water, mechanical and acid scarification pretreatment. International Journal of. Research and Science. 01(01): 1–6
  27. Sun, J., Jia, H., Wang, P., Zhou, T., Wu, Y., and Liu, Z. 2019. Exogenous gibberellin weakens lipid breakdown by increasing soluble sugars levels in early germination of zanthoxylum seeds. Plant Science. 280: 155–163
  28. Uppal, V. dan Bains, K. 2012. Effect of germination periods and hydrothermal treatments on in vitro protein and starch digestibility of germinated legumes. Journal Of Food Science And Technology. 49(2):184-191
  29. Vázquez, M. E., Peña-Valdivia, C. B., García, J. R., Solano, E., Campos, H., and García, E. 2017. Chemical scarification and ozone in seed dormancy alleviation of wild and domesticated opuntia, cactaceae. Ozone: Science and Engineering. 39(2):104–114
  30. Venudevan, B., Sundareswaran, S., and Vijayakumar, A. 2010. Optimization of dormancy breaking treatments for germination improvement of glory lily (Gloriosa superba L .) seeds. Madras Agriculture Journal. 97(1-3): 31–32
  31. Xu, M., Jin, Z., Simsek, S., Hall, C., Rao, J., and Chen, B. 2019. Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chemistry. 295: 579–587
  32. Yuanasari, B. S., Kendarini, N., and Saptadi, D. 2015. Enhancement viability of black soybean seed ( Glycine max L . Merr ) through invigoration osmoconditioning. Jurnal Produksi Tanaman. 3(6): 518–527

Last update:

No citation recorded.

Last update:

No citation recorded.