skip to main content

Pemodelan Emisi Gas CO2 dari Lokasi Tempat Pembuangan Akhir di Kota Pekanbaru menggunakan Dispersi AERMOD

Nofia Rahmadani  -  Program Studi Fiska , Universitas Muhammadiyah Riau, Jl. Tuanku Tambusai, Delima, Kec. Tampan, Kota Pekanbaru, Riau 28290, Indonesia
*Yulia Fitri  -  Program Studi Fisika, Universitas Muhammadiyah Riau, Jl. Tuanku Tambusai, Delima, Kec. Tampan, Kota Pekanbaru, Riau 28290, Indonesia
Sri Fitria Retnawaty  -  Program Studi Fisika, Universitas Muhammadiyah Riau, Jl. Tuanku Tambusai, Delima, Kec. Tampan, Kota Pekanbaru, Riau 28290, Indonesia
Dinda Lestari  -  Program Studi Fisika, Universitas Muhammadiyah Riau, Jl. Tuanku Tambusai, Delima, Kec. Tampan, Kota Pekanbaru, Riau 28290, Indonesia
Sri Mulyani  -  Program Studi Fisika, Universitas Muhammadiyah Riau, Jl. Tuanku Tambusai, Delima, Kec. Tampan, Kota Pekanbaru, Riau 28290, Indonesia
Selvia Selvia  -  Program Studi Fisika, Universitas Muhammadiyah Riau, Jl. Tuanku Tambusai, Delima, Kec. Tampan, Kota Pekanbaru, Riau 28290, Indonesia
Open Access Copyright (c) 2024 Jurnal Wilayah dan Lingkungan
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citation Format:
Abstract
Dekomposisi anaerobik senyawa organik di Tempat Pembuangan Akhir (TPA) sampah bertanggung jawab atas timbulnya gas rumah kaca yang dapat berkontribusi terhadap pemanasan global. Penelitian ini bertujuan untuk mengestimasi jumlah produksi gas CO2 dari tahun 2018 hingga 2068 di TPA Muara Fajar 2 Kota Pekanbaru, Provinsi Riau. Pertama, kami mengumpulkan semua informasi yang diperlukan, termasuk data jumlah sampah padat yang dibuang ke TPA Muara Fajar 2 Pekanbaru. Selanjutnya, kami menganalisis data tersebut  menggunakan model LandGEM untuk memperkirakan jumlah produksi gas CO2 yang dipancarkan ke atmosfer dari TPA Muara Fajar 2 Pekanbaru. Dalam penelitian ini, model dispersi AERMOD digunakan untuk dispersi CO2 dari lokasi TPA Muara Fajar 2 Pekanbaru dalam kondisi tahunan yang berbeda. Distribusi emisi gas CO2 dilakukan secara tahunan mulai dari tahun 2018 hingga 2022 yang berasal dari TPA tersebut. Hasil analisis menunjukkan bahwa produksi gas CO2 mencapai puncaknya pada tahun 2049. Jumlah Gas CO2 akan menurun setelah 30 tahun pertama. Penurunan jumlah gas CO2 dipengaruhi beberapa faktor, salah satunya adalah tingkat biodegradasi. Hasil dispersi yang diperoleh menunjukkan bahwa dispersi CO2 dipengaruhi oleh arah angin. Pemodelan AERMOD menunjukkan bahwa konsentrasi tertinggi untuk emisi CO2 terjadi pada tahun 2022 yaitu sebesar  185.961 μg/m3.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Copyright Transfer Agreement
Subject
Type Research Instrument
  Download (442KB)    Indexing metadata
 Research Instrument
Grafik LandGEM
Subject
Type Research Instrument
  Download (28KB)    Indexing metadata
 Research Instrument
Hasil LandGEM
Subject
Type Research Instrument
  Download (733KB)    Indexing metadata

Article Metrics:

  1. Ahmad, P., & Wani, M. R. (2013). Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment: Volume 2. Springer New York
  2. Amouzouvi, Y. M., Dzagli, M. M., Sagna, K., Török, Z., Roba, C. A., Mereuţă, A., Ozunu, A., & Edjame, K. S. (2020). Evaluation of Pollutants Along the National Road N2 in Togo using the AERMOD Dispersion Model. Journal of Health & Pollution V, 10(27), 1–12
  3. Atabi, F., Ehyaei, M. A., & Ahmadi, M. H. (2014). Calculation of CH 4 and CO 2 Emission Rate in Kahrizak Landfill Site with Land GEM Mathematical Model. Sustainability Forum, 1–17
  4. Barjoee, S. S., Azimzadeh, H., Kuchakzadeh, M., MoslehArani, A., & Sodaiezadeh, H. (2018). Dispersion and Health Risk Assesment of PM10 Emited from the Stacks of a Ceramic and Tile industry in Ardakan, Yazd, Iran. Iranian South Medical Journal Bimonthly, 22(5), 317–332. https://doi.org/1029252/ismj.22.5.317
  5. Badan Pusat Statistik (BPS) Indonesia. (2023). Statistik Indonesia 2023. Badan Pusat Statistik Indonesia
  6. Badan Pusat Statistik (BPS) Kota Pekanbaru. (2023). Kota Pekanbaru dalam Angka. Badan Pusat Statistik Kota Pekanbaru
  7. Badan Pusat Statistik (BPS) Provinsi Riau. (2023). Provinsi Riau Dalam Angka 2023. Pekanbaru: Badan Pusat Statistik Provinsi Riau
  8. Cambaliza, M. O. L., Bogner, J. E., Green, R. B., Shepson, P. B., Harvey, T. A., Spokas, K. A., Stirm, B. H., & Corcoran, M. (2017). Field Measurements and Modeling to Resolve m2 to km2 CH4 Emissions for a Complex Urban Source : An Indiana Landfill Study. Elementa Science of the Anthropocence, 36(5), 2–12. https://doi.org/https://doi.org/10.1525/elementa.145
  9. Dinas Lingkungan Hidup dan Kebersihan Kota Pekanbaru. (2023). Pengelolaan Sampah dan Kebersihan
  10. Elmi, A., Al-harbi, M., Yassin, M. F., & Al-awadhi, M. M. (2020). Modeling Gaseous Emissions and Dispersion of Two Major Greenhouse Gases from Landfill Sites in Arid Hot Environment. Environmental Science and Pollution Research, Alhumoud 2005. https://doi.org/10.1007/s11356-020-11760-6
  11. Fallahizadeh, S., Rahmatinia, M., Mohammadi, Z., Vaezzadeh, M., Tajamiri, A., & Soleimani, H. (2019). Estimation of Methane Gas by LandGEM Model from Yasuj Municipal Solid Waste Landfill, Iran. MethodsX. https://doi.org/10.1016/j.mex.2019.02.013
  12. Ghasemzade, R., & Pazoki, M. (2017). Estimation and Modeling of Gas Emissions in Municipal Landfill (Case Study: Landfill of Jiroft City). Pollution, 3(4), 689–700
  13. Ghosh, P., Shah, G., Chandra, R., Sahota, S., Kumar, H., Vijay, V. K., & Thakur, I. S. (2018). Assessment of Methane Emissions and Energy Recovery Potential from the Municipal Solid Waste Landfills of Delhi, India. Bioresource Technology. https://doi.org/10.1016/j.biortech.2018.10.069
  14. Ghosh, S. K. (2020). Urban Mining and Sustainable Waste Management. Springer Nature Singapore
  15. Handayani. (2020). Biomonitoring Partikulat Matter di Udara yang Dikeluarkan dari Pabrik Semen dan Perbandingannya dengan Hasil Pemodelan Dispersi. Universitas Islam Negeri Ar-Raniry
  16. Head, H. (2018). Poisoned Forests. Gareth Stevens Publishing Lllp
  17. Hosseini, S. S., Yaghmaeian, K., Yousefi, N., & Mahvi, A. H. (2018). Estimation of Landfill Gas Generation in A Municipal Solid Waste Disposal Site by LandGEM Mathematical Model. Global Journal of Environmental Science and Management, 4(4), 493–506. https://doi.org/10.22034/gjesm.2018.04.009
  18. Kementrian Lingkungan Hidup dan Kehutanan. (2022). Jumlah Timbulan Sampah. https://www.menlhk.go.id/
  19. Khalil, M. J., Gupta, R., & Sharma, K. (2014). Microbiological Degradation of Municipal Solid Waste in Landfills for LFG Generation. International Journal of Engineering and Technical Research, 10–14
  20. Knapp, J. R., Laur, G. L., Vadas, P. A., Weiss, W. P., & Tricarico, J. M. (2014). Invited Review : Enteric Methane in Dairy Cattle Production : Quantifying the Opportunities and Impact of Reducing Emissions. Journal of Dairy Science, 97(6), 1–31. https://doi.org/10.3168/jds.2013-7234
  21. Koehn, A. C., Leytem, A. B., & Bjorneberg, D. L. (2013). Comparison of Atmospheric Stability Methods for Calculating Ammonia and Methane Emission Rates with Windtrax. American Society of Agricultural and Biological Engineers, 56(2), 763–768
  22. Lee, U., Han, J., & Wang, M. (2017). Evaluation of Landfill Gas Emissions from Municipal Solid Waste Landfills for the Life-Cycle Analysis of Waste-to-Energy Pathways. Journal of Cleaner Production, 1–24. https://doi.org/10.1016/j.jclepro.2017.08.016
  23. Mahyudin, R. P. (2017). Kajian Permasalahan Pengelolaan Sampah dan Dampak Lingkungan di TPA (Tempat Pemrosesan Akhir). Jukung (Jurnal Teknik Lingkungan), 3(1), 66–74
  24. Majdinasab, A., Zhang, Z., & Yuan, Q. (2017). Modelling of Landfill Gas Generation : A Review. Reviews in Environmental Science and Bio/Technology, 2016. https://doi.org/10.1007/s11157-017-9425-2
  25. Mehta, Y. D., Shastri, Y., & Joseph, B. (2018). Economic Analysis and Life Cycle Impact Assessment of Municipal Solid Waste (MSW) Disposal: A Case Study of Mumbai, India. Waste Management and Research, 36(12), 1177–1189. https://doi.org/10.1177/0734242X18790354
  26. Monice, & Perinov. (2018). Analisis Pemanfaatan Energi Dari Pengolahan Metode Landfiil di TPA Muara Fajar Pekanbaru. Rang Teknik Journal, 1(2), 215–220
  27. Njoku, P. O., Odiyo, J. O., Durowoju, O. S., & Edokpayi, J. N. (2018). A Review of Landfill Gas Generation and Utilisation in Africa. Open Environmental Sciences, 10, 1–15. https://doi.org/10.2174/1876325101810010001
  28. Occupational Safety and Health Administration (OSHA). (2012). Chemical Sampling Information: Carbon Dioxide
  29. Pawar, P. M., Balasubramaniam, R., Ronge, B. P., Salunkhe, S. B., Vibhute, A. S., & Melinamath, B. (2021). Techno-Societal 2020: Proceedings of the 3rd International Conference on Advanced Technologies for Societal Applications—Volume 2. Springer International Publishing
  30. Pawlowska, M. (2014). Mitigation of Landfill Gas Emissions. Taylor & Francis
  31. Peraturan Daerah Kota Pekanbaru Nomor 8 Tahun 2014 Tentang Pengelolaan Sampah, (2014)
  32. Rahmanto, E., Rahmabudhi, S., & Kustia, T. (2022). Analisis Spasial Penentuan Tipe Iklim Menurut Klasifikasi Schmidt – Ferguson Menggunakan Metode Thiessen – Polygon di Provinsi Riau Spatial Analysis of Climate Type Determination by Schmidt – Ferguson Classification Using the Thiessen – Polygon Method in. Buletin GAW Bariri, 3(1), 35–42
  33. Rahmi, H., Sasmita, A., & Yenie, E. (2017). Analisis Produksi Gas Metana (CH4) dan Karbon Dioksida (CO2) dari Tempat Pembuangan Akhir Kota Pekanbaru Herfi. Jom FTEKNIK, 4(1), 1–8
  34. Ramadhan, D. (2019). Kebijakan Pemerintah Daerah Kota Pekanbaru Dalam Pengelolaan Sampah dengan Konsep 3R Tahun 2017. Jom Fisip, 6(2), 1–13
  35. Ramprasad, C., & Gopalakrishnan, A. N. (2013). Electrochemical Treatment of Wetland Water Contaminated by Landfill Leachate. Springer, 83(1), 1–6. https://doi.org/10.1007/s40010-012-0048-2
  36. Ramprasad, C., Teja, H. C., Gowtham, V., & Vikas, V. (2022). MethodsX Quantification of Landfill Gas Emissions and Energy Production Potential in Tirupati Municipal Solid Waste Disposal Site by LandGEM Mathematical Model. MethodsX, 9, 2–12. https://doi.org/10.1016/j.mex.2022.101869
  37. Sari, E. G., & Sofwan, M. (2021). Carbon Dioxide ( CO 2 ) Emissions Due to Motor Vehicle Movements in Pekanbaru City , Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 6(4). https://doi.org/10.25299/jgeet.2021.6.4.7692
  38. Sarnoff, J. D. (2016). Research Handbook on Intellectual Property and Climate Change. Edward Elgar Publishing, Incorporated
  39. Sasmita, A., Andesgur, I., & Rahmi, H. (2016). Potensi Produksi Gas Metana Dari Kegiatan Landfilling di TPA Muara Fajar , Pekanbaru. Seminar Nasional Teknik Kimia –Teknologi Oleo Petro Kimia Indonesia, 169–176. https://www.researchgate.net/publication/319006888%0APotensi
  40. Sasmita, A., Yenie, E., & Khairani, S. (2022). Estimasi Emisi Gas Rumah Kaca dari Limbah Padat dan Air Limbah Domestik di Kota Pekanbaru. Jurnal Sains &Teknologi Lingkungan, 14(1), 50–64. https://doi.org/10.20885/jstl.vol14.iss1.art8
  41. Sehol, M., Armus, R., Gumirat, M. I. I. G., Purnomo, T., Riyanti, Mamede, M., Samai, S., Satriawan, D., Wahyuni, S., Lutfi, Erika, H., Pramudianto, A., Pertiwi, N., & Indrawati, A. (2022). Biologi Lingkungan. PT Global Eksekutif Teknologi
  42. Sharma, V., & Singh, D. (2021). Magbook India & World Geography for Civil services prelims/state PCS & other Competitive Exam 2022. Arihant Publications India limited
  43. Shen, S., Chen, Y., Zhan, L., Xie, H., Bouazza, A., He, F., & Zuo, X. (2018). Methane Hotspot Localization and Visualization at A Large-Scale Xi ’an Landfill in China : Effective Tool for Landfill Gas Management. Journal of Environmental Management, 225, 232–241. https://doi.org/10.1016/j.jenvman.2018.08.012
  44. Shiddieq, D., Sudira, P., & Tohari. (2018). Aspek Dasar Agronomi Berkelanjutan. Gajah Mada University Press
  45. Sil, A., Kumar, S., & Kumar, R. (2014). Formulating LandGem Model for Estimation of Landfill Gas Under Indian Scenario Avick Sil * Sunil Kumar Rakesh Kumar. Environmental Technology and Management, 17, 293–299
  46. Sistem Informasi Pengelolaan Sampah Nasional. (2023). Komposisi Sampah. https://sipsn.menlhk.go.id/sipsn/
  47. Surtinah, S. (2020). Increasing Sweet Corn Production : Fertilizing Zea Mays Saccharata , Sturt Context in Pekanbaru . Increasing Sweet Corn Production : Fertilizing Zea Mays Saccharata , Sturt Context in Pekanbaru. Indonesia. Earth and Environmental Science PAPER, 469, 1–5. https://doi.org/10.1088/1755-1315/469/1/012114
  48. Syafrudin, & Ramadan, B. S. (2023). Pemodelan Rekayasa Lingkungan. Jakad Media Publishing
  49. Wijaya, T., & Cahyawati, A. N. (2022). Transformasi Dan Inovasi Digital Business Models Dalam Berbagai Sektor Publik. Deepublish
  50. Yaman, C. (2019). Investigation of Greenhouse Gas Emissions and Energy Recovery Potential from Municipal Solid Waste Management Practices. Environmental Development, 1–16. https://doi.org/10.1016/j.envdev.2019.100484
  51. Younes, M. K., Nopiah, Z. M., Basri, N. E. A., Basri, H., Abushammala, M. F. M., & Younes, M. Y. (2015). Landfill Area Estimation Based on Integrated Waste Disposal Options and Solid Waste Forecasting Using Modified ANFIS Model. Waste Management, 2–9. https://doi.org/10.1016/j.wasman.2015.10.020

Last update:

No citation recorded.

Last update:

No citation recorded.