TOTO SLOT TOTO SLOT TOTO SLOT TOTO SLOT TOTO SLOT TOTO TOGEL TOTO SLOT SLOT ONLINE TOTO SLOT toto togel TOTO SLOT SLOT ONLINE SLOT ONLINE SLOT ONLINE SLOT ONLINE TOTO SLOT TOTO SLOT TOTO SLOT slot online TOTO SLOT TOTO SLOT TOTO SLOT TOTO TOGEL TOTO MACAU TOTO TOGEL TOTO SLOT TOTO SLOT TOTO SLOT TOTO SLOT TOTO TOGEL TOTO SLOT TOTO SLOT TOTO SLOT TOTO TOGEL BYDPLAY TOTO SLOT TOTO TOGEL TOTO TOGEL TOTO TOGEL TOTO SLOT SLOT GACOR TOTO SLOT TOTO SLOT TOTO SLOT TOTO SLOT TOTO SLOT TOTO SLOT toto macau toto togel SLOT GACOR TOTO TOGEL TOTO TOGEL SLOT GACOR TOTO TOGEL TOTO SLOT TOTO SLOT TOTO SLOT PASCOL4D TOTO SLOT KARI4D TOTO SLOT TOTO SLOT TOTO TOGEL PASCOL4D TOTO SLOT TOTO SLOT TOTO TOGEL SLOT GACOR TOTO SLOT TOTO SLOT TOTO TOGEL TOTO TOGEL TOTO SLOT TOTO SLOT TOTO SLOT TOTO SLOT TOTO TOGEL TOTO SLOT TOTO SLOT
SGO777 borneo303 10naga rtp slot gacor situs toto toto slot toto togel slot 4d toto macau situs toto toto slot toto togel slot 4d toto macau situs toto toto slot toto togel slot 4d toto macau situs toto toto slot toto togel slot 4d toto macau ayamtoto ayamtoto ayamtoto ayamtoto ayamtoto ayamtoto kuatoto kuatoto
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
Live RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTPLive RTP
skip to main content

AI-driven Data Analysis for Sustainable Development

Rufat E. Azizov orcid scopus  -  Azerbaijan State Oil and Industry University, Azerbaijan
*Nigar Ismayilova  -  Department of General and Applied Mathematics, Azerbaijan State Oil and Industry University, Azerbaijan
Open Access Copyright (c) 2025 Rufat E. Azizov, Nigar Ismayilova
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Sustainable development is a global challenge which requires an innovative approach merging environmental science, economics, policy-making, and artificial intelligence. The data-driven approach using intelligent methodologies is valuable for evaluating and mitigating environmental impacts. This study exploits data from different sources and machine learning methods to analyze key sustainability indicators, focusing on CO2 emissions, ecological footprint, and load capacity factor. The analysis emphasizes advanced feature selection techniques and predictive modelling to identify the most significant economic, industrial, agricultural, and environmental factors that affect sustainability. Comparative analysis shows differences between the importance of indicators established through expert-driven decisions across various scientific fields and AI-driven assessments. The research attempts to solve the problem following a multi-step process: (1) clustering of countries based on environmental indicators to identify patterns and classify according to similar performance; (2) evaluation of the socio-economic and environmental factors’ impact on CO2 emissions using machine learning; (3) predicting future trends in emissions and sustainability metrics through high-level artificial intelligence techniques such as Hidden Markov models. This study will potentially serve policymakers, enabling data-driven decision-making to promote sustainable development efforts. The results demonstrate the value of interdisciplinary approaches to deal with sustainability challenges and to stimulate a balanced path toward economic growth and environmental protection.

Fulltext View|Download

Article Metrics:

  1. Arora NK, Mishra I. United Nations Sustainable Development Goals 2030 and environmental sustainability: race against time. Environmental Sustainability. 2019;2(4):339–42
  2. United Nations Sustainable Development Goals [Internet]. Available from: https://sdgs.un.org/
  3. de Souza JT, de Francisco AC, Piekarski CM, Prado GF do, de Oliveira LG. Data mining and machine learning in the context of sustainable evaluation: a literature review. IEEE Latin America Transactions. 2019;17(03):372–82
  4. Andries A, Morse S, Murphy R, Lynch J, Woolliams E, Fonweban J. Translation of Earth observation data into sustainable development indicators: An analytical framework. Sustainable Development. 2019;27(3):366–76
  5. Pande CB, et al. Predictive modeling of land surface temperature (LST) based on Landsat-8 satellite data and machine learning models for sustainable development. Journal of Cleaner Production. 2024;444:141035
  6. Yao Z, et al. Machine learning for a sustainable energy future. Nature Reviews Materials. 2023;8(3):202–15
  7. Poli G, et. al. A Data-Driven Approach to Monitor Sustainable Development Transition in Italian Regions Through SDG 11 Indicators. In: Gervasi Osvaldo and Murgante B and GC and TD and CRAMA and FLMN, editor. Computational Science and Its Applications – ICCSA 2024 Workshops. Cham: Springer Nature Switzerland; 2024. p. 337–55
  8. Jabbari M, Shafiepour MM, Ashrafi K, Abdoli G. Differentiating countries based on the sustainable development proximities using the SDG indicators. Environment, Development and Sustainability. 2020;22(7):6405–23
  9. da Silva J, Fernandes V, Limont M, Rauen WB. Sustainable development assessment from a capital's perspective: Analytical structure and indicator selection criteria. Journal of Environmental Management. 2020;260:110147
  10. Chen IC. Predicting regional sustainable development to enhance decision-making in brownfield redevelopment using machine learning algorithms. Ecological Indicators. 2024;163:112117
  11. Molina-Gómez NI, Rodríguez-Rojas K, Calderón-Rivera D, Díaz-Arévalo J,L López-Jiménez PA. Using machine learning tools to classify sustainability levels in the development of urban ecosystems. Sustainability (Switzerland). 2020 Apr 1;12(8)
  12. El-Aal MFA. The relationship between CO2 emissions and macroeconomics indicators in low and high-income countries: using artificial intelligence. Environment, Development and Sustainability. 2024
  13. Sinaga KP, Hussain I, Yang MS. Entropy K-Means Clustering with Feature Reduction under Unknown Number of Clusters. IEEE Access. 2021;9:67736–51
  14. Elghazel H, Aussem A. Unsupervised feature selection with ensemble learning. Machine Learning. 2015;98(1–2):157–80
  15. Li S, Siu YW, Zhao G. Driving Factors of CO2 Emissions: Further Study Based on Machine Learning. Frontiers in Environmental Science. 2021;23:9
  16. Li X, Ren A, Li Q. Exploring Patterns of Transportation-Related CO2 Emissions Using Machine Learning Methods. Sustainability (Switzerland). 2022;14(8:4588
  17. Castelli T, Mocenni C, Dimitri GM. A machine learning approach to assess Sustainable Development Goals food performances: The Italian case. Plos one. 2024;19(1):e0296465
  18. García-Rodríguez A., et al. Sustainable visions: unsupervised machine learning insights on global development goals. PloS one. 2025;20(3):e0317412
  19. Mathrani A, Wang J, Li D, Zhang X. Clustering analysis on sustainable development goal indicators for forty-five asian countries. Sci. 2023;5(2):14
  20. Li J, et al. The Relationship between Energy Consumption, CO2 Emissions, Economic Growth, and Health Indicators. International Journal of Environmental Research and Public Health. 2023;20(3):2325
  21. United Nations Climate Change. The Paris agreement [Internet]. Available from: https://unfccc.int/process-and-meetings/the-paris-agreement
  22. COP29 Baku Azerbaijan. COP29 Declarations on Green Digital Action [Internet]. Available from: https://cop29.az/en/pages/cop29-declaration-on-green-digital-action
  23. Kumari S, Singh SK. Machine learning-based time series models for effective CO2 emission prediction in India. Environmental Science and Pollution Research. 2023;30(55):116601-116616
  24. World Bank Group. World Bank Data [Internet]. Available from: https://data.worldbank.org/
  25. Likas A, Vlassis N, Verbeek JJ. The global k-means clustering algorithm. Pattern recognition. 2003;36(2):451-461
  26. Januzaj Y, Beqiri E, Luma A. Determining the Optimal Number of Clusters using Silhouette Score as a Data Mining Technique. International Journal of Online & Biomedical Engineering (iJOE). 2023;19(4):174-182
  27. Yadav A, Jha CK, Sharan A. Optimizing LSTM for time series prediction in Indian stock market. Procedia Computer Science. 2020;167:2091-2100
  28. Hanif M, Sami F, Hyder M, Ch MI. Hidden Markov model for time series prediction. Journal of Asian Scientific Research. 2017;7(5):196-205
  29. Cao W, Zhu W, Demazeau Y. Multi-Layer Coupled Hidden Markov Model for Cross-Market Behavior Analysis and Trend Forecasting. IEEE Access. 2019;7:158563–74
  30. Worldometer. CO2 emissions by country [Internet]. Available from: https://www.worldometers.info/co2-emissions/co2-emissions-by-country/

Last update:

No citation recorded.

Last update:

No citation recorded.