skip to main content

Karakteristik Arus Laut Permukaan dari High Frequency Radar pada Musim Timur di Selat Bali

1Program Studi Ilmu Kelautan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia

2Badan Meteorologi Klimatologi dan Geofisika, Indonesia

3Departemen Oseanografi, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia

Received: 31 Mar 2022; Revised: 25 Apr 2022; Accepted: 20 Jun 2022; Available online: 1 Jul 2022; Published: 1 Nov 2022.
Open Access Copyright (c) 2022 Jurnal Kelautan Tropis under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Bali Strait has many activities in port and water, such as passenger and freight transportation, tourism, and fisheries. Oceanographic conditions, especially sea surface current (SSC), affect the smoothness of ports and shipping activities in the Bali Strait. High-Frequency Radar (HF Radar) has the advantage of monitoring and mapping surface currents and ocean waves with high resolution. Because of the narrow strait area, HF Radar is very beneficial in describing the characteristics of SSC in the Bali Strait. Therefore, HF Radar data is used to describe the dynamics of SSC in the Bali strait, especially in ship crossing lane, with a temporal approach during Southeast Monsoon, June to August 2020. This study was conducted for 15 days each month which included neap tide and spring tide. Surface current charts are created to analyze the pattern of temporal SSC against the wind, tides, and their components. The results showed In the southeast monsoon, the average current speed at the research site ranged from 0.1 – 1.08 m/s. The direction of the surface current is predominantly towards the south. The characteristics of surface currents in the Bali Strait are influenced by tides, sea level anomalies, and coastal morphology. Temporally, the speed of the current is greater during the ebb phase and when the spring tide. Spatially, the central region of the Bali Strait waters has a greater current speed. Knowledge of areas and times with higher current speeds can be the basis for determining the shipping lane between ports in the Bali Strait.

 

 

Selat Bali memiliki banyak kegiatan di pelabuhan dan perairan, seperti transportasi penumpang dan barang, pariwisata, serta perikanan. Kondisi oseanografi, khususnya arus permukaan laut, mempengaruhi kelancaran pelabuhan dan aktivitas pelayaran di Selat Bali. High-Frequency Radar (HF Radar) memiliki keunggulan pemantauan dan pemetaan arus permukaan dan gelombang laut dengan resolusi tinggi. Karena wilayah selat yang sempit, HF Radar sangat bermanfaat dalam menggambarkan karakteristik arus permukaan laut di Selat Bali. Oleh karena itu, data HF Radar digunakan untuk menggambarkan dinamika arus permukaan laut di jalur penyeberangan Selat Bali dengan pendekatan temporal pada musim timur, bulan Juni hingga Agustus 2020. Penelitian ini dilakukan selama 15 hari tiap bulan yang mencakup waktu pasang purnama dan pasang perbani. Grafik arus permukaan dibuat untuk menganalisis pola arus permukaan laut secara temporal ketika musim timur terhadap angin, pasang surut dan komponennya. Hasil menunjukkan pada musim timur, rata – rata kecepatan arus di lokasi penelitian berkisar antara 0.1 – 1.08 m/s. Arah arus permukaan dominan ke arah selatan. Karakteristik arus permukaan di Selat Bali di pengaruhi oleh pasang surut, sea level anomaly dan morfologi pantai. Secara temporal, kecepatan arus lebih besar ketika menuju surut dan ketika pasang purnama. Secara spasial, wilayah tengah perairan Selat Bali memiliki kecepatan arus yang lebih besar. Pengetahuan mengenai wilayah perairan dan waktu – waktu dengan kecepatan arus yang tinggi dapat menjadi dasar dalam penentuan alur pelayaran antar pelabuhan di Selat Bali.

Fulltext View|Download
Keywords: Arus Laut Permukaan; Temporal; Pasang Surut

Article Metrics:

  1. Aoki, K. & Kataoka, T. (2018). High-frequency ocean radar derived characteristics of sea surface currents in the Ariake Sea, Japan. Journal of Oceanography, 74(4), 431–437. doi: 10.1007/s10872-018-0464-2
  2. Barrick, D.E. & Snider, J.B. (1977). The Statistics of HF Sea-Echo Doppler Spectra. IEEE Journal of Oceanic Engineering, 2(1), 19–28. doi: 10.1109/JOE.1977.1145317
  3. Bialystocki, N. & Konovessis, D. (2016). On the estimation of ship’s fuel consumption and speed curve: A statistical approach. Journal of Ocean Engineering and Science, 1(2), 157–166. doi: 10.1016/j.joes.2016.02.001
  4. Brown, J. (2016). Ocean circulation. Open University
  5. Chen, C., Shiotani, S. & Sasa, K. (2015). Effect of ocean currents on ship navigation in the east China sea. Ocean Engineering, 104, 283–293. doi: 10.1016/j.oceaneng.2015.04.062
  6. Dimas, R., Setiyono, H., & Helmi, M. (2015). Arus Geostropik Permukaan Musiman Berdasarkan Data Satelit Altimetri Tahun 2012-2013 Di Samudera Hindia Bagian Timur. Jurnal Oseanografi, 4(4), 756–764
  7. Evans, P., Armstrong, S., Wilson, C., Fairley, I., Wooldridge, C. & Masters, I. 2013. Characterisation of a Highly Energetic Tidal Energy Site with Specific Reference to Hydrodynamics and Bathymetry. European Wave and Tidal Energy Conference, p.1–11
  8. Fadlan, A. & Rosanti, R. (2019). Variabilitas Tinggi Muka Laut di Indonesia Berdasarkan Pengamatan Satelit Altimetri. Seminar Nasional Penginderaan Jauh Ke-6, p.468–473
  9. Firdaus, R., Siadari, E. L. & Alfahmi, F. (2021). Measurement and Analysis of Ocean Current using High- Frequency (HF) Radar Observation in the Bali Strait. IOP Conference Series: Earth and Environmental Science, 893(1), p.012053. doi: 10.1088/1755-1315/893/1/012053
  10. Fujii, S., Heron, M.L., Kim, K., Lai, J.W., Lee, S.H., Wu, X., Wu, X., Wyatt, L. R. & Yang, W.C. (2013). An overview of developments and applications of oceanographic radar networks in Asia and Oceania countries. Ocean Science Journal, 48(1), 69–97. doi: 10.1007/s12601-013-0007-0
  11. Hanifa, A.D., Syamsudin, F., Zhang, C., Mutsuda, H., Chen, M., Zhu, X.H., Kaneko, A., Taniguchi, N., Li, G., Zhu, Z.N., & Gohda, N. (2020). Tomographic measurement of tidal current and associated 3-h oscillation in Bali Strait. Estuarine, Coastal and Shelf Science, 236(February), p.106655. doi: 10.1016/j.ecss.2020.106655
  12. Heron, M., Gomez, R., Weber, B., Dzvonkovskaya, A., Helzel, T., Thomas, N. & Wyatt, L. (2016). Application of HF Radar in Hazard Management. International Journal of Antennas and Propagation, Article ID 4725407. doi: 10.1155/2016/4725407
  13. Ismanto, A., Ismunarti, D.H., Sugianto, D.N., Maisyarah, S., Subardjo, P., Dwi-Suryoputro, A.A. & Siagian, H. (2019). The potential of ocean current as electrical power sources alternatives in Karimunjawa Islands Indonesia. Advances in Science, Technology and Engineering Systems, 4(6), 126–133. doi: 10.25046/aj040615
  14. Jena, B.K., Arunraj, K.S., Suseentharan, V. & Ramanamurthy, M.V. (2020). Surface circulation offthe Andaman Islands from HF radar observations. Current Science, 118(11), 1739–1745. doi: 10.18520/cs/v118/i11/1739-1745
  15. Pranowo, W. S., Kuswardhani, A.R. & Purwanto, P. (2015). Karakteristik arus pasang surut di selat Badung, Bali. Segara Journal, 11(2), 115–123
  16. Purwanto, Sugianto, D.N., Zainuri, M., Permatasari, G., Atmodjo, W., Rochaddi, B., Ismanto, A., Wetchayont, P., & Wirasatriya, A. (2021). Seasonal variability of waves within the indonesian seas and its relation with the monsoon wind. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 26(3), 189–196. doi: 10.14710/ik.ijms.26.3.189-196
  17. Roarty, H., Cook, T., Hazard, L., George, D., Harlan, J., Cosoli, S., Wyatt, L., Alvarez Fanjul, E., Terrill, E., Otero, M. & Largier, J. (2019). The global high frequency radar network. Frontiers in Marine Science, 6, p.164. doi: 10.3389/fmars.2019.00164
  18. Saramul, S. (2017). Seasonal monsoon variations in surface currents in the Gulf of Thailand revealed by high frequency radar. Engineering Journal, 21(4), 25–37. doi: 10.4186/ej.2017.21.4.25
  19. Setiawan, F. (2020). Pergerakan Arus Permukaan Laut Selat Bali Berdasarkan Parameter Angin Dan Cuaca. Jurnal Riset Kelautan Tropis, 1(2), 1-15. doi: 10.30649/jrkt.v1i2.25
  20. Supriyadi, E., Hidayat, R., Santikayasa, I.P., & Ramdhani, A. (2021). An Analysis of Surface Ocean Currents from HF Radar Measurements in the Bali Strait and the Flores Sea, Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 11(4), 1521–1534. doi: 10.18517/ijaseit.11.4.14265
  21. Surbakti, H. (2012). Karakteristik pasang surut dan pola arus di Muara Sungai Musi, Sumatera Selatan. Jurnal Penelitian Sains, 15(1), 35–39
  22. Suryanti, Supriharyono, & Anggoro, S. (2019). Pengelolaan Wilayah Pesisir Terpadu. FPIK UNDIP
  23. Tanto, T.A.l, Wisha, U.J., Kusumah, G., Pranowo, W.S., & Husrin, S. (2017). Karakteristik Arus Laut Teluk Benoa - Bali (Characteristics of Sea Current in Benoa Bay Waters – Bali). Jurnal Ilmiah Geomatika, 23(1), 37–48
  24. Tarhadi, T., Indrayanti, E. & Dwi-Suryoputro, A.A. (2014). Studi Pola Dan Karateristik Arus Laut Di Perairan Kaliwungu Kendal Jawa Tengah Pada Musim Peralihan I. Jurnal Oseanografi, 3(1), 16–25
  25. Usman, E. 2007. Penentuan lokasi sarana penghubung jawa - bali (selat bali) sesuai dengan kondisi optimal geologi kelautan. Jurnal Geologi dan Sumberdaya Mineral, 17(4), 233-242
  26. Wirasatriya, A., Sugianto, D.N., Helmi, M., Setiawan, R.Y., & Koch, M. (2019). Distinct Characteristics of SST Variabilities in the Sulawesi Sea and the Northern Part of the Maluku Sea during the Southeast Monsoon. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(6), 1763–1770. doi: 10.1109/JSTARS.2019.2913739
  27. World Meteorological Office. (2018). Guide to Marine Meteorological Services. Switzerland

Last update:

No citation recorded.

Last update:

No citation recorded.