skip to main content

Estimasi Slip Rate di Sesar Semangko menggunakan ALOS PALSAR 1

1Teknik Geomatika, Institut Teknologi Sumatera, Jl. Terusan Ryacudu Way Hui, Kecamatan Jati Agung, Lampung Selatan 35365, Indonesia, Indonesia

2Teknik Geomatika, Institut Teknologi Sumatera, Indonesia

Received: 11 Dec 2023; Revised: 5 Jan 2024; Accepted: 16 Jan 2024; Published: 24 Oct 2024.
Open Access Copyright (c) 2024 Jurnal Geosains dan Teknologi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Provinsi Lampung merupakan salah satu pulau yang memiliki potensi bencana gempa bumi di masa mendatang dikarenakan berada dalam jalur sesar Sumatera yaitu Sesar Semangko.  Potensi gempa bumi di zona sesar Semangko dapat diestimasi dengan menghitung slip rate sesar Semangko. Penelitian ini bertujuan untuk mengestimasi slip rate sesar Semangko menggunakan data Advanced Land Observing Satellite (ALOS) Phased Array L-band SAR (PALSAR 1) dengan rentang data 2007 hingga 2010. Data InSAR diestimasi menggunakan metode the small baseline subset (SBAS) InSAR time-series technique dengan menggunakan koreksi velocity dari stasiun GNSS. Hasil LOS velocity InSAR terkoreksi dengan velocity stasiun GNSS sebesar 2,97 mm/tahun sampai dengan 8,67 mm/tahun. Hasil estimasi slip rate sesar Semangko menggunakan ALOS PALSAR 1 sebesar 11,40 mm/tahun.

Fulltext View|Download
Keywords: Sesar Semangko; InSAR; ALOS PALSAR 1; Slip rate
Funding: Institut Teknologi Sumatera

Article Metrics:

  1. Alatza, S., Papoutsis, I., Paradissis, D., Kontoes, C., Papadopoulos, G.A., 2020. Multi-temporal inSAR analysis for monitoring ground deformation in Amorgos Island, Greece. Sensors (Switzerland), 20(2). DOI: https://doi.org/10.3390/s20020338
  2. Alif, S.M., Anggara, O., Ristiana, V., Engineering, G., 2023. Jurnal Geografi Gea Coherence Analysis of Sentinel-1A Images in Various Land. 23(2), 135–143
  3. Alif, S.M., Cahyani, P.F., Anggara, O., Rizqiansyah, A., 2022. Slip Rate of Kumering Fault in Lampung Province Calculated from GPS Data from 2007 to 2021. Jurnal Geosains dan Teknologi; Vol 5, No 2 (2022): Juli 2022DO - 10.14710/jgt.5.2.2022.83-90 . DOI: https://ejournal2.undip.ac.id/index.php/jgt/article/view/13297
  4. Alif, S. M., Fattah, E. I., & Kholil, M. (2020). Geodetic slip rate and locking depth of east Semangko Fault derived from GPS measurement. Geodesy and Geodynamics, 11(3), 222–228. DOI: https://doi.org/10.1016/j.geog.2020.04.002
  5. Alif, S.M., Fattah, E.I., Kholil, M., Anggara, O., 2021. Source of the 2019 Mw6.9 Banten Intraslab earthquake modelled with GPS data inversion. Geodesy and Geodynamics, 12(4), 308–314. DOI: https://doi.org/10.1016/j.geog.2021.06.001
  6. Alif, S.M., Siagian, J.M., Anggara, O., 2023. Present-day Crustal Deformation in West Sumatra After Series of Sumatran Great Earthquake from 2004-2010. Journal of Earth and Marine Technology (JEMT), 3(2), 59–68. https://doi.org/10.31284/j.jemt.2023.v3i2.3733
  7. Anggara, O., Alif, S.M., Pratama, A.W., Melvin, W., 2024. Uji Signifikansi Stasiun GPS Kontinu dan Periodik dalam Identifikasi Pergerakan Koseismik. 13(1), 89–95. DOI: https://doi.org/10.25077/jfu.13.1.89-95.2024
  8. Anggara, O., Welly, T.K., Fauzi, A.I., Alif, S.M., Perdana, R.S., Oktarina, S.W., Nuha, M.U., Rosadi, U., 2023. Monitoring ground deformation of Sinabung volcano eruption 2018-2019 using DInSAR technique and GPS data. AIP Conference Proceedings, 2654(February). DOI: https://doi.org/10.1063/5.0114428
  9. Bateson, L., Cigna, F., Boon, D., Sowter, A., 2015. The application of the intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK. International Journal of Applied Earth Observation and Geoinformation, 34(1). DOI: https://doi.org/10.1016/j.jag.2014.08.018
  10. Bird, P., 2003. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). DOI: https://doi.org/10.1029/2001GC000252
  11. Chen, C.W. dan Zebker, H.A., 2002. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1709–1719. DOI: https://doi.org/10.1109/TGRS.2002.802453
  12. Chlieh, M., Avouac, J.P., Sieh, K., Natawidjaja, D.H., & Galetzka, J., 2008. Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. Journal of Geophysical Research: Solid Earth, 113(5), 1–31. DOI: https://doi.org/10.1029/2007JB004981
  13. Cigna, F., Ramírez, R.E., Tapete, D., 2021. Accuracy of sentinel-1 PSI and SBAS InSAR displacement velocities against GNSS and geodetic leveling monitoring data. Remote Sensing, 13(23). DOI: https://doi.org/10.3390/rs13234800
  14. Duquesnoy, T., Bellier, O., Kasser, M., Sébrier, M., Vigny, C., Bahar, I., 1996. Deformation related to the 1994 Liwa earthquake derived from geodetic measurements. Geophysical Research Letters, 23(21), 3055–3058. DOI: https://doi.org/10.1029/96GL02818
  15. Dziewonski, A.M., Chou, T.A., Woodhouse, J.H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86(B4), 2825–2852. DOI: https://doi.org/10.1029/JB086iB04p02825
  16. Elliott, J.R., Biggs, J., Parsons, B., Wright, T.J., 2008. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophysical Research Letters, 35(12). DOI: https://doi.org/10.1029/2008GL033659
  17. Eyubagil, E.E., Solak, H.İ., Kavak, U.S., Tiryakioğlu, İ., Sözbilir, H., Aktuğ, B., Özkaymak, Ç., 2021. Present day strike-slip deformation within the southern part of the İzmir-balıkesir transfer zone based on gnss data and implications for seismic hazard assessment in western anatolia. Turkish Journal of Earth Sciences, 30(2), 143–160. DOI: https://doi.org/10.3906/yer-2005-26
  18. Genrich, J.F., Bock, Y., McCaffrey, R., Prawirodirdjo, L., Stevens, C.W., Puntodewo, S.S.O., Subarya, C., Wdowinski, S., 2000. Distribution of slip at the northern Sumatran fault system. Journal of Geophysical Research: Solid Earth, 105(B12), 28327–28341. DOI: https://doi.org/10.1029/2000jb900158
  19. Hanifa, N., Sagiya, T., Kimata, F., Efendi, J., Abidin, H.Z., Meilano, I., 2014. Interplate coupling model off the southwestern coast of Java , Indonesia , based on continuous GPS data in 2008 – 2010. Earth and Planetary Science Letters, 401, 159–171. DOI: https://doi.org/10.1016/j.epsl.2014.06.010
  20. Karimzadeh, S., Cakir, Z., Osmanoĝlu, B., Schmalzle, G., Miyajima, M., Amiraslanzadeh, R., Djamour, Y., 2013. Interseismic strain accumulation across the North Tabriz Fault (NW Iran) deduced from InSAR time series. Journal of Geodynamics, 66. DOI: https://doi.org/10.1016/j.jog.2013.02.003
  21. McCaffrey, R., 2009. The tectonic framework of the sumatran subduction zone. In Annual Review of Earth and Planetary Sciences (Vol. 37, hal. 345–366). DOI: https://doi.org/10.1146/annurev.earth.031208.100212
  22. Meilano, I., Susilo, S., Gunawan, E., Parjanto, B., 2021. Geodetic Slip Rate Estimates for The Kumering and Semangko Segments of The Sumatera Fault. Jurnal Meteorologi dan Geofisika, 22, 39. DOI: https://doi.org/10.31172/jmg.v22i1.802
  23. Natawidjaja, D.H., 2018. Updating active fault maps and sliprates along the Sumatran Fault Zone, Indonesia. IOP Conference Series: Earth and Environmental Science, 118(1). DOI: https://doi.org/10.1088/1755-1315/118/1/012001
  24. Orhan, O., 2021. Monitoring of land subsidence due to excessive groundwater extraction using small baseline subset technique in Konya, Turkey. Environmental Monitoring and Assessment, 193(4), 10661. DOI: https://doi.org/10.1007/s10661-021-08962-x
  25. Panuntun, H., Prasidya, A.S., 2020. Identifikasi Deformasi Permukaan Gempa Bumi Turki 24 Januari 2020 Dengan Teknik Interferometric Synthetic Aperture Radar (Insar). Teknologi Survei dan Pemetaan Dasar, 1–11
  26. Prawirodirdjo, L., Bock, Y., Genrich, J.F., Puntodewo, S.S.O., Rais, J., Subarya, C., Sutisna, S., 2000. One century of tectonic deformation along the Sumatran fault from triangulation and Global Positioning System surveys. Journal of Geophysical Research: Solid Earth, 105(B12), 28343–28361. DOI: https://doi.org/10.1029/2000jb900150
  27. PuSGeN, 2017. Peta sumber dan bahaya gempa Indonesia tahun 2017. Pusat Penelitian dan Pengembangan Perumahan dan Permukiman Badan Penelitian dan Pengembangan Kementerian Pekerjaan Umum dan Perumahan Rakyat
  28. Qiu, J., Liu, L., Wang, C., Wang, Y., 2019. Present-day tectonic activity along the central section of the Altyn Tagh fault derived from time series InSAR. Geodesy and Geodynamics, 10(4), 307–314. DOI: https://doi.org/10.1016/j.geog.2019.03.008
  29. Sandwell, D., Mellors, R., Tong, X., Xu, X., Wei, M., Wessel, P., 2010. GMTSAR Software for Rapid Assessment of Earthquakes. AGU Fall Meeting Abstracts
  30. Savage, J.C. dan Burford, R.O., 1973. Geodetic determination of relative plate motion in central California. Journal of Geophysical Research, 78(5), 832–845
  31. Sieh, K. dan Natawidjaja, D., 2000. Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research: Solid Earth, 105(B12), 28295–28326. DOI: https://doi.org/10.1029/2000jb900120
  32. Tanioka, Y., Yudhicara, Kususose, T., Kathiroli, S., Nishimura, Y., Iwasaki, S.I., Satake, K., 2006. Rupture process of the 2004 great Sumatra-Andaman earthquake estimated from tsunami waveforms. Earth, Planets and Space, 58(2), 203–209. DOI: https://doi.org/10.1186/BF03353379
  33. Wessel, P., Smith, W., Scharroo, R., Luis, J., Wobbe, F., 2013. Generic Mapping Tools: Improved Version Released. Eos Transactions American Geophysical Union, 94. DOI: https://doi.org/10.1002/2013EO450001
  34. Widiwijayanti, C., Déverchère, J., Louat, R., Sébrier, M., Harjono, H., Diament, M., Hidayat, D., 1996. Aftershock sequence of the 1994, Mw 6.8, Liwa earthquake (Indonesia): Seismic rupture process in a volcanic arc. Geophysical Research Letters, 23(21), 3051–3054. DOI: https://doi.org/10.1029/96GL02048
  35. Xu, Y., Li, T., Tang, X., Zhang, X., Fan, H., Wang, Y., 2022. Research on the Applicability of DInSAR, Stacking-InSAR and SBAS-InSAR for Mining Region Subsidence Detection in the Datong Coalfield. Remote Sensing, 14(14). DOI: https://doi.org/10.3390/rs14143314
  36. Zhang, Q., Li, Y., Zhang, J., Tian, Y., Tian, T., Li, B., 2023. Slip deformation along the Gyaring Co fault from InSAR and GPS. Acta Geophysica, 71(1), 53–63. DOI: https://doi.org/10.1007/s11600-022-00920-6
  37. Zhang, W., Ji, L., Zhu, L., Liu, C., Jiang, F., Xu, X., 2022. Current Slip and Strain Rate Distribution Along the Ganzi-Yushu-Xianshuihe Fault System Based on InSAR and GPS Observations. Frontiers in Earth Science, 10(February), 1–16. DOI: https://doi.org/10.3389/feart.2022.821761

Last update:

No citation recorded.

Last update:

No citation recorded.