skip to main content

THE CHEMICAL TOPOLOGICAL GRAPH ASSOCIATED WITH THE NILPOTENT GRAPH OF A MODULO RING OF PRIME POWER ORDER

Deny Putra Malik scopus  -  Universitas Mataram, Indonesia
Muhammad Naoval Husni  -  Universitas Mataram, Indonesia
Miftahurrahman Miftahurrahman  -  Faculty of Mathematics and Natural Sciences, Universitas Mataram, Mataram, Indonesia
*I Gede Adhitya Wisnu Wardhana orcid scopus  -  Universitas Mataram, Indonesia
Ghazali Semil @ Ismail orcid  -  Universiti Teknologi MARA Johor Branch, Malaysia

Citation Format:
Abstract
Chemical topological graph theory constitutes a subdomain within mathematical chemistry that leverages graph theory to model chemical molecules.  In this context, a chemical graph serves as a graphical representation of molecular structures. Specifically, a chemical molecule is portrayed as a graph wherein atoms are denoted as vertices, and the interatomic bonds are represented as edges within the graph. Various molecular properties are intricately linked to the topological indices of these molecular graphs. Notably, commonly employed indices encompass the Wiener Index, the Gutman Index, and the Zagreb Index.  This study is directed towards elucidating the numerical invariance and topological indices inherent to a nilpotent graph originating from a modulo integer ring with prime order. Consequently, the investigation seeks to discern how the Wiener Index, the Zagreb Index, and other characteristics of the nilpotent graph manifest within a ring of integers modulo prime order powers.
Fulltext View|Download
Keywords: topological indices; nilpotent graph; integer modulo ring

Article Metrics:

  1. G. Chartrand and P. Zhang, A First Course in Graph Theory. Dover Publications, 2012
  2. H. Hua, K. C. Das, and H. Wang, “On atom-bond connectivity index of graphs,” J Math Anal Appl, vol. 479, no. 1, pp. 1099–1114, Nov. 2019, doi: 10.1016/j.jmaa.2019.06.069
  3. R. García-Domenech, J. Gálvez, J. V. de Julián-Ortiz, and L. Pogliani, “Some new trends in chemical graph theory,” Chemical Reviews, vol. 108, no. 3. pp. 1127–1169, Mar. 2008. doi: 10.1021/cr0780006
  4. R. G. Godsil C., Algebraic graph theory. Springer, 2001
  5. N. H. Sarmin, N. I. Alimon, and A. Erfanian, “Topological Indices of the Non-commuting Graph for Generalised Quaternion Group,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 43, no. 5, pp. 3361–3367, Sep. 2020, doi: 10.1007/s40840-019-00872-z
  6. X. Ma, H. Wei, and L. Yang, “The Coprime graph of a group,” International Journal of Group Theory, vol. 3, no. 3, pp. 13–23, 2014, doi: 10.22108/ijgt.2014.4363
  7. F. Mansoori, A. Erfanian, and B. Tolue, “Non-coprime graph of a finite group,” AIP Conf Proc, vol. 1750, no. June 2016, 2016, doi: 10.1063/1.4954605
  8. S. Zahidah, D. Mifta Mahanani, and K. L. Oktaviana, “CONNECTIVITY INDICES OF COPRIME GRAPH OF GENERALIZED QUATERNION GROUP,” Journal of the Indonesian Mathematical Society, vol. 27, no. 03, pp. 285–296, 2021
  9. A. G. Syarifudin, Nurhabibah, D. P. Malik, and I. G. A. W. dan Wardhana, “Some characterizatsion of coprime graph of dihedral group D2n,” J Phys Conf Ser, vol. 1722, no. 1, 2021, doi: 10.1088/1742-6596/1722/1/012051
  10. N. Nurhabibah, I. G. A. W. Wardhana, and N. W. Switrayni, “NUMERICAL INVARIANTS OF COPRIME GRAPH OF A GENERALIZED QUATERNION GROUP,” Journal of the Indonesian Mathematical Society, vol. 29, no. 01, pp. 36–44, 2023
  11. N. Nurhabibah, A. G. Syarifudin, and I. G. A. W. Wardhana, “Some Results of The Coprime Graph of a Generalized Quaternion Group Q_4n,” InPrime: Indonesian Journal of Pure and Applied Mathematics, vol. 3, no. 1, pp. 29–33, 2021, doi: 10.15408/inprime.v3i1.19670
  12. M. R. Gayatri, Q. Aini, Z. Y. Awanis, S. Salwa, and I. G. A. W. Wardhana, “The Clique Number and The Chromatics Number Of The Coprime Graph for The Generalized Quarternion Group,” JTAM (Jurnal Teori dan Aplikasi Matematika) , vol. 7, no. 2, pp. 409–416, 2023, doi: 10.31764/jtam.v7i2.13099
  13. Nurhabibah, D. P. Malik, H. Syafitri, and I. G. A. W. Wardhana, “Some results of the non-coprime graph of a generalized quaternion group for some n,” AIP Conf Proc, vol. 2641, no. December 2022, p. 020001, 2022, doi: 10.1063/5.0114975
  14. N. Nurhabibah, A. G. Syarifudin, I. G. A. W. Wardhana, and Q. Aini, “The Intersection Graph of a Dihedral Group,” Eigen Mathematics Journal, vol. 4, no. 2, pp. 68–73, 2021, doi: 10.29303/emj.v4i2.119
  15. S. Akbari, F. Heydari, and M. Maghasedi, “The intersection graph of a group,” J Algebra Appl, vol. 14, no. 5, Jun. 2015, doi: 10.1142/S0219498815500656
  16. D. S. Ramdani, I. G. A. W. Wardhana, and Z. Y. Awanis, “THE INTERSECTION GRAPH REPRESENTATION OF A DIHEDRAL GROUP WITH PRIME ORDER AND ITS NUMERICAL INVARIANTS,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 3, pp. 1013–1020, Sep. 2022, doi: 10.30598/barekengvol16iss3pp1013-1020
  17. M. J. Nikmehr and S. Khojasteh, “On the nilpotent graph of a ring,” Turkish Journal of Mathematics, vol. 37, no. 4, pp. 553–559, 2013, doi: 10.3906/mat-1112-35
  18. E. Y. Asmarani, S. T. Lestari, D. Purnamasari, A. G. Syarifudin, S. Salwa, and I. G. A. W. Wardhana, “The First Zagreb Index, The Wiener Index, and The Gutman Index of The Power of Dihedral Group,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 7, no. 4, pp. 513–520, May 2023, doi: 10.18860/ca.v7i4.16991
  19. M. N. Husni, H. Syafitri, A. M. Siboro, A. G. Syarifudin, Q. Aini, and I. G. A. W. Wardhana, “THE HARMONIC INDEX AND THE GUTMAN INDEX OF COPRIME GRAPH OF INTEGER GROUP MODULO WITH ORDER OF PRIME POWER,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 3, pp. 961–966, Sep. 2022, doi: 10.30598/barekengvol16iss3pp961-966

Last update:

No citation recorded.

Last update:

No citation recorded.