skip to main content

MIXTURE PURIFICATION MODEL WITH CASCADING TANK CONFIGURATION

*Yanuar Bhakti Wira Tama  -  Departement of Mathematics, Institut Teknologi Kalimantan, Balikpapan, Indonesia
Robby Robby  -  Department of Mathematics, Parahyangan Catholic University, Bandung, Indonesia

Citation Format:
Abstract
Consider mixing problems which are often found in Calculus or Differential Equation courses. Under some assumptions, this problem can be used to model the purification process in a polluted mixture. In this case, the cascading configuration will be investigated for modelling the spread of pollution from one mixture to another. There are two main problems: finding time needed so the amount of pollutant in mixture inside the certain tank does not exceed certain threshold and finding the number of tanks needed so that the amount of mixture in the last tank does not exceed certain threshold. The solution for the second problem will be simplified by using Stirling approximation, which approximates factorial into exponential term. For the first problem, the time needed depends on the number of tanks, initial value of the pollutant, the rate of flow, and the volume of solution inside the tanks. For the second problem, the number of tanks only depends on the initial value of the pollutant.
Fulltext View|Download
Keywords: mixing problem; system of differential equations; Stirling approximation

Article Metrics:

  1. C. H. Edwards and D. E. Penney, Elementary Differential Equations, 6th ed. Upper Saddle River, NJ: Pearson, 2008
  2. D. Varberg, E. J. Purcell, and S. E. Rigdon, Calculus Early Transcendentals, vol. 1. Edinburgh Gate, Harlow: Pearson Education Limited, 2014
  3. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th ed. New York: Wiley, 2009
  4. F. O. . Alnoor and T. A. Khalid, “A short note on a technique for solving mixing problems by using the Laplace transform,” TechHub, vol. 1, no. 2, pp. 1–5, Nov. 2021
  5. Antonín Slavík, “Mixing Problems with Many Tanks,” The American Mathematical Monthly, vol. 120, no. 9, p. 806, 2013, doi: 10.4169/amer.math.monthly.120.09.806
  6. R. Efendi and D. Sagita, “Penerapan Sistem Persamaan Diferensial Linier pada Simulasi Debit Air pada Pipa,” JMPM (Jurnal Material dan Proses Manufaktur), vol. 5, no. 1, pp. 10–17, Oct. 2021, doi: 10.18196/jmpm.v5i1.12081
  7. A. N. Hadi, E. Djauhari, A. K. Supriatna, and M. D. Johansyah, “Teknik Penentuan Solusi Sistem Persamaan Diferensial Linear Non-Homogen Orde Satu,” Matematika, vol. 18, no. 1, May 2019, doi: 10.29313/jmtm.v18i1.5079
  8. A. Mujib MT. and M. Maswar, “ANALISIS METODE MUTUA DAN APLIKASINYA TERHADAP DIFERENSIAL LINEAR ORDE-N,” KadikmA, vol. 13, no. 3, p. 174, Dec. 2022, doi: 10.19184/kdma.v13i3.35418
  9. A. M. Nugraha and N. Nurullaeli, “Penyelesaian Numerik Persamaan Differensial Biasa Orde Satu dan Orde Dua Berbasis Graphical Unit Interface MATLAB,” in Diskusi Panel Nasional Pendidikan Matematika, 2023, pp. 267–274
  10. H. J. Pratama and Y. Ramdani, “Membangun Fungsi Green untuk Persamaan Diferensial Linear Non Homogen Orde-2 Koefesien Konstan,” Jurnal Riset Matematika, pp. 50–58, Jul. 2022, doi: 10.29313/jrm.v2i1.1016
  11. H. A. Sitompul and E. W. B. Siahaan, “SOLUSI PERSAMAAN DIFERENSIAL BIASA ORDE TINGGI DENGAN METODE POLINOMIAL DAN RUNGE KUTTA,” JURNAL PENELITIAN FISIKAWAN, vol. 7, no. 1, p. 32, Feb. 2024, doi: 10.46930/jurnalpenelitianfisikawan.v7i1.4185
  12. D. Saadaoui et al., “Extraction of single diode PV cell/module model parameters using a hybrid BMO approach with Lambert’s W function,” International Journal of Ambient Energy, vol. 45, no. 1, Dec. 2024, doi: 10.1080/01430750.2024.2304331
  13. J. Wang and N. J. Moniz, “Analysis of thermodynamic problems with the Lambert W function,” Am J Phys, vol. 87, no. 9, pp. 752–757, Sep. 2019, doi: 10.1119/1.5115334
  14. J. R. G. Mendonça, “Electromagnetic surface wave propagation in a metallic wire and the Lambert W function,” Am J Phys, vol. 87, no. 6, pp. 476–484, Jun. 2019, doi: 10.1119/1.5100943
  15. F. Mainardi, E. Masina, and J. L. González-Santander, “A Note on the Lambert W Function: Bernstein and Stieltjes Properties for a Creep Model in Linear Viscoelasticity,” Symmetry (Basel), vol. 15, no. 9, p. 1654, Aug. 2023, doi:
  16. 3390/sym15091654
  17. C. Jamilla, R. Mendoza, and I. Mező, “Solutions of neutral delay differential equations using a generalized Lambert W function,” Appl Math Comput, vol. 382, p. 125334, Oct. 2020, doi: 10.1016/j.amc.2020.125334
  18. R. Gerov and Z. Jovanovic, “Parameter Estimation of the IPDT Model using the Lambert W Function,” in 2019 14th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), IEEE, Oct. 2019, pp. 400–403. doi: 10.1109/TELSIKS46999.2019.9002242
  19. M. Ćalasan, S. H. E. Abdel Aleem, H. M. Hasanien, Z. M. Alaas, and Z. M. Ali, “An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function,” Energy, vol. 264, p. 126165, Feb. 2023, doi: 10.1016/j.energy.2022.126165
  20. N. H. Bharatbhai, P. C. Deshmukh, R. B. Scott, K. Roberts, and S. R. Valluri,
  21. “Lambert W function methods in double square well and waveguide problems,” J Phys Commun, vol. 4, no. 6, p. 065001, Jun. 2020, doi: 10.1088/2399-6528/ab92d9
  22. C. Berg, E. Massa, and A. P. Peron, “A Family of Entire Functions Connecting the Bessel Function $$J_1$$ and the Lambert W Function,” Constr Approx, vol. 53, no. 1, pp. 121–154, Feb. 2021, doi: 10.1007/s00365-020-09499-x
  23. T. S. L. V. Ayyarao and G. I. Kishore, “Parameter estimation of solar PV models with artificial humming bird optimization algorithm using various objective functions,” Soft comput, Jun. 2023, doi: 10.1007/s00500-023-08630-x
  24. A. Bemporad, “Efficient conversion of mixed logical dynamical systems into an equivalent piecewise affine form,” IEEE Trans Automat Contr, vol. 49, no. 5, pp. 832–838, 2004, doi: 10.1109/TAC.2004.828315

Last update:

No citation recorded.

Last update:

No citation recorded.