skip to main content

Perancangan PLTS Rooftop untuk Pemakaian Sendiri (PS) di PLTU Berau 2 × 7 MW

1Magister Energi, Sekolah Pascasarjana, Universitas Diponegoro, Indonesia

2Departemen Teknik Mesin, Fakultas Teknik, Universitas Diponegoro, Indonesia

Open Access Copyright (c) 2022 Jurnal Energi Baru dan Terbarukan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

PLTU Berau 2 × 7 MW terletak di Kelurahan Teluk Bayur Kecamatan Teluk Bayur Kabupaten Berau Provinsi Kalimantan Timur yang Operation & Maintenance-nya di Kelola oleh PT. Indonesia Power. PLTU Berau 2 × 7 MW mensuplai energi listrik ke sistem jaringan isolated 20 KV Tanjung redeb. Konsumsi daya listrik (Pemakaian Sendiri) rata-rata sebesar 10.419.942,030 kWh/tahun. Salah satu program untuk menurunkan konsumsi pemakaian sendiri dan untuk mendukung kebijakan peningkatan Energi Baru Terbarukan (EBT) dalam bauran energi nasional hingga 23% pada tahun 2025 yaitu dengan pemasangan PLTS Rooftop. Kawasan PLTU Berau 2 × 7 MW memiliki nilai radiasi rata-rata sebesar 4,67 kWh/m²/hari sepanjang tahun 2020 dan rata-rata 3,9 kWh/m²/hari dalam rentang 22 tahun. Tujuan dari penelitian ini untuk mengetahui potensi energi surya yang dapat dihasilkan dilokasi Rooftop PLTU Berau 2 × 7 MW dengan menggunakan simulasi software HelioScope. Dari hasil simulasi diperoleh potensi energi listrik yang dapat dihasilkan adalah 570.364 kWh/tahun.

Fulltext View|Download
Keywords: PLTU Berau 2 × 7 MW; PLTS Rooftop; HelioScope

Article Metrics:

  1. Ali, M. S., Rima, N. N., Sakib, M. I. H., & Khan, M. F. (2018). Helioscope Based Design of a MWp Solar PV Plant on a Marshy Land of Bangladesh and Prediction of Plant Performance with the Variation of Tilt Angle. GUB Journal of Science and Engineering, 5(1). https://doi.org/10.3329/gubjse.v5i1.47893
  2. Arvin Karuniawan, E. (2021). Analisis Perangkat Lunak PVSYST, PVSOL dan HelioScope dalam Simulasi Fixed Tilt Photovoltaic. Jurnal Teknologi Elektro, 12(3)
  3. Ballaji, A., MH, A., Swamy, K. N., Oommen, S., & Ankaiah, B. (2019). A Detailed Study On Different Generations Of Solar Cell Technologies With Present Scenario Of Solar PV Efficiency And Effect Of Cost On Solar PV Panel. International Journal of Research in Advent Technology, 7(4). https://doi.org/10.32622/ijrat.74201963
  4. Andrei, H., Dogaru-Ulieru, V., Chicco, G., Cepisca, C., & Spertino, F. (2007). Photovoltaic applications. Journal of Materials Processing Technology. https://doi.org/10.1016/j.jmatprotec.2006.03.043
  5. Bhadoria, V. S., Pachauri, R. K., & Tiwari, S. (2020). Investigation of Different BPD Placement Topologies for Shaded Modules in a Series-Parallel Configured PV Array. 216911–216921. https://doi.org/10.1109/ACCESS.2020.3041715
  6. Desai, A. A., & Mikkili, S. (2019). Modelling and analysis of PV configurations (alternate TCT-BL, total cross tied, series, series parallel, bridge linked and honey comb) to extract maximum power under partial shading conditions. CSEE Journal of Power and Energy Systems, PP(99). https://doi.org/10.17775/CSEEJPES.2020.00900
  7. Bandong, S., Leksono, E., Purwarianti, A., & Joelianto, E. (2019). Performance Ratio Estimation and Prediction of Solar Power Plants Using Machine Learning to Improve Energy Reliability. Proceedings of the 2019 6th International Conference on Instrumentation, Control, and Automation, ICA 2019. https://doi.org/10.1109/ICA.2019.8916687
  8. Arvin Karuniawan, E. (2021). Analisis Perangkat Lunak PVSYST, PVSOL dan HelioScope dalam Simulasi Fixed Tilt Photovoltaic. Jurnal Teknologi Elektro, 12(3)
  9. Ballaji, A., MH, A., Swamy, K. N., Oommen, S., & Ankaiah, B. (2019). A Detailed Study On Different Generations Of Solar Cell Technologies With Present Scenario Of Solar PV Efficiency And Effect Of Cost On Solar PV Panel. International Journal of Research in Advent Technology, 7(4). https://doi.org/10.32622/ijrat.74201963
  10. Bandong, S., Leksono, E., Purwarianti, A., & Joelianto, E. (2019). Performance Ratio Estimation and Prediction of Solar Power Plants Using Machine Learning to Improve Energy Reliability. Proceedings of the 2019 6th International Conference on Instrumentation, Control, and Automation, ICA 2019. https://doi.org/10.1109/ICA.2019.8916687
  11. Camarena-Gamarra, C., Calle-Maravi, J., & Nahui-Ortiz, J. (2020). Benchmarking of Solar PV performance ratio among different regions in Peru: Sample of five small-scale systems. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology. https://doi.org/10.18687/LACCEI2020.1.1.245
  12. Chandra, S., Agrawal, S., & Chauhan, D. S. (2018). Effect of ambient temperature and wind speed on performance ratio of polycrystalline solar photovoltaic module: An experimental analysis. International Energy Journal, 18(2)
  13. Damiri, D. J., & Nugraha, A. A. (2021). Technical Performance and Economic Feasibility Simulation of 200kWP Rooftop Solar Photovoltaic On grid on Industrial Estate Factory Building with Helioscope Software. Jurnal Rekayasa Elektrika, 17(2). https://doi.org/10.17529/jre.v17i2.19578
  14. Gopi, A., Sudhakar, K., Keng, N. W., & Krishnan, A. R. (2021). Comparison of normal and weather corrected performance ratio of photovoltaic solar plants in hot and cold climates. Energy for Sustainable Development, 65. https://doi.org/10.1016/j.esd.2021.09.005
  15. HemanthBabu, N., Shivashimpiger, S., Samanvita, N., & Parthasarathy, V. M. (2019). Performance ratio and loss analysis for 20MW grid connected solar PV system - case study. International Journal of Engineering and Advanced Technology, 8(2)
  16. Hsu, P. C., Huang, B. J., Wu, P. H., Wu, W. H., Lee, M. J., Yeh, J. F., Wang, Y. H., Tsai, J. H., Li, K., & Lee, K. Y. (2017). Long-term Energy Generation Efficiency of Solar PV System for Self-consumption. Energy Procedia, 141. https://doi.org/10.1016/j.egypro.2017.11.018
  17. Kokate, A., & Wagh, M. (2019). Experimental Analysis of Performance Ratio of Solar Rooftop Photovoltaic System (SRTPV) for Various Roof Orientation and Tilt. Journal of Physics: Conference Series, 1172(1). https://doi.org/10.1088/1742-6596/1172/1/012067
  18. Mustafa, U., Qeays, I. A., BinArif, M. S., Yahya, S. M., & Shahrin, S. bin. (2020). Efficiency improvement of the solar PV-system using nanofluid and developed inverter topology. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1808119
  19. Pakkiraiah, B., & Sukumar, G. D. (2016). Research Survey on Various MPPT Performance Issues to Improve the Solar PV System Efficiency. Journal of Solar Energy, 2016. https://doi.org/10.1155/2016/8012432
  20. Peng, Z., Herfatmanesh, M. R., & Liu, Y. (2017). Cooled solar PV panels for output energy efficiency optimisation. Energy Conversion and Management, 150. https://doi.org/10.1016/j.enconman.2017.07.007
  21. Prakhya, R. K., Shashidhar Reddy, K., & Lokeshawar Reddy, C. (2019). Estimating degradation factorby performance ratio of rooftop solar PV plant. International Journal of Innovative Technology and Exploring Engineering, 8(9 Special Issue 2). https://doi.org/10.35940/ijitee.I1126.0789S219
  22. Rega, M. S. N., Sinaga, N., & Windarta, J. (2021). Perencanaan PLTS Rooftop untuk Kawasan Pabrik Teh PT Pagilaran Batang. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(4). https://doi.org/10.26760/elkomika.v9i4.888
  23. Rizkasari, D., Wilopo, W., & Ridwan, M. K. (2020). Potensi Pemanfaatan Atap Gedung Untuk Plts Di Kantor Dinas Pekerjaan Umum, Perumahan Dan Energi Sumber Daya Mineral (Pup-Esdm) Provinsi Daerah Istimewa Yogyakarta. Journal of Approriate Technology for Community Services, 1(2). https://doi.org/10.20885/jattec.vol1.iss2.art7
  24. Rohankar, N., C.J, J., Bakre, S., Shelar, S., & Shiralkar, A. (2020). Designing and Simulation using Software’s PV SYST & HELIOSCOPE for Mitigating Challenges of Grid Connected PV Based Solar Plant. International Journal of Innovative Technology and Exploring Engineering, 9(6). https://doi.org/10.35940/ijitee.e3758.049620
  25. Law No. 30 of 2009 concerning Electricity, Pub. L. No. 30, Law No. 30 of 2009 concerning Electricity (2009). https://gatrik.esdm.go.id/assets/uploads/download_index/files/9ef73-03.uu-30-2009-tentang-ketenagalistrikan.pdf
  26. Syahindra, K. D., Ma’Arif, S., Widayat, A. A., Fauzi, A. F., & Setiawan, E. A. (2021). Solar PV system performance ratio evaluation for electric vehicles charging stations in transit oriented development (TOD) areas. E3S Web of Conferences, 231. https://doi.org/10.1051/e3sconf/202123102002
  27. Tambunan, H. B., Hakam, D. F., Prahastono, I., Pharmatrisanti, A., Purnomoadi, A. P., Aisyah, S., Wicakson, Y., & Sandy, I. G. R. (2020). The challenges and opportunities of renewable energy source (RES) penetration in Indonesia: Case study of Java-Bali power system. Energies, 13(22). https://doi.org/10.3390/en13225903
  28. Umar, N. H., Bora, B., Umar, N., Banerjee, C., & Panwar, B. S. (2018). Study of different PV Technologies under Composite Climates using test beds at NISE View project All-India Survey of Photovoltaic Module Reliability: 2016 View project Comparison of different PV power simulation softwares: case study on performance analysis of 1 MW grid-connected PV solar power plant. www.ijesi.org||Volumewww.ijesi.org
  29. Umer, F., Aslam, M. S., Rabbani, M. S., Hanif, M. J., Naeem, N., & Abbas, M. T. (2019). Design and optimization of solar carport canopies for maximum power generation and efficiency at Bahawalpur. International Journal of Photoenergy, 2019. https://doi.org/10.1155/2019/6372503

Last update:

No citation recorded.

Last update:

No citation recorded.